Composite deck in two-dimensional modelling of railway truss bridge/Kompozitinis paklotas modeliuojant santvarini gelezinkelio tilta dvimateje erdveje/Dzelzcela tilta kopnes kompozitas klatnes divdimensiju modelesana/Raudtee fermsilla komposiitdeki kahemootmeline modelleerimine.
Siekierski, Wojciech
1. Construction and assessment of truss bridges with composite deck
Contemporary railway decks support gravel bed and railway track.
This type of track makes the structure less sensitive to vibrations (due
to greater inertia) and enables mechanical track maintenance. The deck
is made of steel (Ahlgrimm, Lohrer 2005; Dorrer 2009) or concrete (Kim,
Shim 2009). Concrete slab is usually connected to steel cross
beams--"composite deck" (Hou, Ye 2011; Pedro, Reis 2010;
Siekierski 2010). Steel studs are usually used as shear connectors (Shim
et al. 2014; Xu, Sugiura 2013, 2014; Xu et al. 2012, 2014; Xue et al.
2012). Figs 1 and 2 show an example of truss bridge with composite deck.
Cross beams of the deck transfer loads to truss girders that. They are
usually Warren-type trusses (Ahlgrimm, Lohrer 2005; Cheng et al. 2013a,
2013b; Dorrer 2009; Kalanta et al. 2012). In the case of long spans the
spacing of truss flange nodes adjacent to deck is greater than cross
beam spacing. Thus truss flange of significant flexural rigidity is
required to carry bending caused by mid-node cross beams (plate or box
girders are used). Such arrangement is present not only in truss bridge
spans but in truss-stayed bridges (Reintjes, Gebert 2006) and in trussed
decks of modern cable-stayed bridges (Zongyu 2012) as well.
[FIGURE 1 OMITTED]
[FIGURE 2 OMITTED]
Fig. 3 gives an example of connection of composite deck (namely
cross beam) to truss flange connection. The cross beam web is connected
to flange web stiffener. This connection is stiffened in horizontal
plane by wind bracing gusset plate. The gusset plate extends up to the
connector (between concrete slab and cross beam) nearest to the truss
flange (Fig. 3). The part of cross beam between truss flange web and the
connector is actually a steel beam.
The response of the span under loading depends mainly on truss
girders. However, joint action of girders and composite deck is
possible. To assume so, the following conditions concerning deck members
must be met:
a) cross beams are able to transfer part of longitudinal forces
from truss flanges to concrete slab;
b) connectors between cross beams and concrete slab are able to
transfer shear forces orthogonal to transverse beams (along span);
c) the slab is able to carry longitudinal forces transferred from
connectors; if the slab is in tension and cracked, sufficient
reinforcement must be provided.
To verify the conditions mentioned above it is necessary to
complete the assessment of railway truss bridge with composite deck in
the following stages:
--stage I: setting computational model based on assumptions
concerning deck contribution to overall load carrying capacity of the
span;
--stage II: checking obtained internal forces in the deck members
against their assumed load carrying capacity;
--stage III: if the requirements are not satisfied, it is necessary
to repeat the stage I under the assumptions of lack of truss girders and
deck cooperation.
[FIGURE 3 OMITTED]
2. Two-dimensional modelling and railway truss bridges with
composite deck
Progress in structural modelling makes computational models of
bridges more and more complex. However, one must remember that complex
modelling requires more accurate data. This applies to structural
geometry, structural materials and loading. The requirements are not the
only reasons for constant popularity of simpler methods of structural
modelling. Two-dimensional (2D) beam-element modelling is the most
common of them.
2D analysis is chosen due to its effectiveness. Accuracy of results
is often sufficient for engineering purposes (Brencich, Gambarotta
2009). Sophisticated computational model analysis is often accompanied
by 2D analysis for verification purposes (Liao, Okazaki 2009). Some
analytical methods that are still applied in bridge design are based on
2D modelling of structures (Machelski 1998).
Truss bridges consist of 1D elements (one dimension is relatively
much bigger than the other two) and 2D elements (one dimension is
relatively smaller than the other two). For such structures usually
three-dimensional (3D) computational models are created (Brencich,
Gambarotta 2009; Caglayan et al. 2012).
However, in the case of the single-track railway truss bridges the
deck length/width ratio is quite substantial even for spans of modest
lengths. Thus, for this kind of structures the 2D modelling is also
justified, especially in terms of determination of vertical loading
effects on truss girders at preliminary design stage or as a
verification of results provided by more complex model analysis.
One of the problems that arise in 2D modelling of bridge spans
accounts for joint action of bridge girders and bridge deck. In the case
of composite deck, the deck slab may be considered as flexibly connected
to the truss girders. Determination of the flexibility may be crucial
for setting proper 2D model of truss bridge span.
With this purpose, prior to setting computational model, the
structural detailing of deck components has to be examined. It is
necessary to determine the following:
a) type of cross beam to truss flange connection;
b) material, type and arrangement of connectors;
c) material, dimension and reinforcement of concrete slab.
The data are necessary to find rigidity of cross beams to truss
flange connection and longitudinal rigidity of the deck itself.
The following cases are possible:
a) in terms of cross beams to truss flange connection: case a1)
"strong" connection in horizontal plane cross beam web and
flanges are connected or only cross beam web is connected and there is a
stiffener (i.e. wind bracings gusset plate) in horizontal plane,
case a2) "weak" connection in horizontal plane--only
cross beam web is connected and there is no stiffener in horizontal
plane,
b) in terms of longitudinal rigidity of the deck, there are two
factors: shear connectors and reinforced concrete slab. The following
cases are possible:
case b1) connector system is able to carry shear forces, lateral to
cross beams, and concrete slab is able to carry tensile forces as
uncracked,
case b2) connector system is able to carry shear forces, lateral to
cross beams, and concrete slab is able to carry tensile forces as
cracked, but with sufficient reinforcement.
Flexural rigidity of cross beams in horizontal plane between the
edge of deck slab and truss flange may be determined on the basis of
observation of structural detailing. Longitudinal rigidity of the deck
slab itself depends on analysis results. Concrete slab may behave as
uncracked or cracked depending on magnitude of longitudinal tensile
forces. The obtained internal forces have to be checked against
appropriate load carrying capacities to identify the right case.
All that structural features may be reflected in 2D model of truss
bridge with composite deck.
3. Equivalent characteristics of truss flange adjacent to composite
deck in 2D computational model
If the assumption is made that the composite deck is capable of
joint action together with main girders, then the 2D model setting
requires assessment of the influence of composite deck on span stiffness
and internal forces distribution. Common approach is to introduce
equivalent characteristics of the truss flange adjacent to the deck.
This approach, due to its effectiveness, is used in practice
(Karlikowski 1995). There an additional analysis is carried out.
Computational model is shown in Fig. 4. The model consists of bridge
deck and truss flanges (marked with symbols D1-D6) adjacent to it. The
analysis of flanges elongation under tensile forces is put versus
elongation of flanges themselves (without the deck). Thus, equivalent
cross-section of flanges with regard to deck influence on longitudinal
stiffness may be computed. Field test proved that this approach improved
assessment of actual span flexural stiffness in comparison to 2D model
based on the stiffness of truss girders only.
Though effective the procedure is rather time-consuming. Relatively
large part of the whole structure had to be modelled to accomplish the
aim of the analysis, i.e. setting equivalent cross-section area of
bottom flange members.
Here, for composite deck a different technique is suggested. A
member of truss flange adjacent to the deck between two subsequent cross
beams is analysed--Fig. 5.
The meaning of symbols in the Fig. 5 is as follows: N--total force
applied to the system, kN; [P.sub.a]--force transferred by bottom flange
member, kN; [P.sub.c]--force transferred by concrete slab, kN;
d--distance between truss flange longitudinal axis and the first
connector between cross beam and concrete slab, m; r--cross beam
spacing, m; [E.sub.a]--elastic modulus of steel, kPa; [E.sub.c]--elastic
modulus of concrete, kPa; [A.sub.a]--cross section area of bottom flange
member, [m.sup.2;] [A.sub.c]--half of cross-sectional area of the
concrete slab, [m.sup.2;] [I.sub.ah]--moment of inertia of steel part of
cross beam in horizontal plane, [m.sup.4].
For the system shown in Fig. 5 it is assumed that:
--neutral axes of truss flange member, concrete slab and cross beam
are in the same plane,
--truss flange member and concrete slab are rigid enough not to
bend in horizontal plane.
Then the steel part of cross beam, of length d, may be assumed as
rotationally fixed at both ends.
Thus, a steel part of cross beam acts as the element in Fig. 6. The
relationship between R and w, in Fig. 6, is:
R = [12[E.sub.a][I.sub.ah]/[d.sup.3]] w, (1)
where [E.sub.a]--elastic modulus of steel, kPa; [I.sub.ah]--moment
of inertia of steel part of cross beam in horizontal plane, [m.sup.4];
d--distance between rotationally fixed cross-sections in Fig. 6, m;
w--relative displacement of the two sections in the direction of force R
(orthogonally to the member), m.
For the system shown in Fig. 5 similar equation may be written:
N - [P.sub.a] = 12[E.sub.a][I.sub.ah]/[d.sup.3]([DELTA][l.sub.a] -
[DELTA][l.sub.c]), (2)
where [DELTA][l.sub.a]--elongation of truss flange member, m;
[DELTA][l.sub.a]--elongation of concrete slab, m.
[FIGURE 4 OMITTED]
[FIGURE 5 OMITTED]
[FIGURE 6 OMITTED]
Equilibrium of forces requires:
N - [P.sub.a] = [P.sub.c], (3)
Elongation of truss flange member and half of the deck slab,
respectively, are:
[DELTA][l.sub.a] = [P.sub.a]r/[E.sub.a][A.sub.a], (4)
[DELTA][l.sub.c] = [P.sub.c]r/[E.sub.c][A.sub.c], (5)
Substituting Eqs (3)-(5) for [P.sub.c], [DELTA][l.sub.a] and
[DELTA][l.sub.c] in Eq (2) gives:
N - [P.sub.a] =
12[E.sub.a][I.sub.ah]/[d.sup.3]([P.sub.a]r/[E.sub.a][A.sub.a] - (N -
[P.sub.a])r/[E.sub.c][A.sub.c], (6)
hence
[P.sub.a] = ([d.sup.3][beta][A.sub.c] +
12[I.sub.ah]r)[A.sub.a]N/[d.sup.3][A.sub.a][beta][A.sub.c] +
12[I.sub.ah]r([beta][A.sub.c] + [A.sub.a], (7)
where [beta] = [E.sub.c]/[E.sub.a]. In the equation:
[E.sub.c]--elastic modulus of concrete, kPa; [E.sub.a]--elastic modulus
of steel, kPa.
Equivalent cross-sectional area of truss flange must provide
equality of its elongations and the elongation of the truss flange as
part of the complex system shown in Fig. 4 that is:
Nr/[E.sub.a][A.sub.a equ] = [P.sub.a]r/[E.sub.a][A.sub.a], (8)
therefore
[A.sub.a equ] = N/[P.sub.a] [A.sub.a]. (9)
Substituting Eq (7) for [P.sub.a] in Eq (9) gives:
[A.sub.a equ] = [d.sup.3] [A.sub.a][beta][A.sub.c] +
12[I.sub.ah]r([beta][A.sub.c] + [A.sub.a])/[d.sup.3][beta][A.sub.c] + +
12[I.sub.ah]r. (10)
Equivalent cross-sectional area of truss flange member,
[A.sub.equ], takes into account contribution of the composite deck to
longitudinal stiffness of that truss flange member in 2D computational
model.
Eq (10) is valid if there is no cracking of concrete slab. However,
the concrete slab may crack due to combined flexure between and over
supports together with elongation due to cooperation with truss girders.
In such case it is necessary to make the following modifications in the
Eq (10):
[FIGURE 7 OMITTED]
a) [A.sub.c] is to be replaced by cross-sectional area of half of
longitudinal reinforcement of the slab;
b) [beta] is to be taken as unity.
If truss flange deforms under cross beam bending in horizontal
plane or if cross beam to truss girder flange connection lacks
stiffening in horizontal plane, steel cross beam model as in Fig. 6
cannot be assumed. Instead partial rotational restraint of cross beam at
its tip near to truss flange member is to be considered.
The degree of the rotational restraint is very hard to establish.
It would require laboratory testing of cross beam to truss girder
connection for given bridge span with composite deck. Thus the
simplified approach is suggested. Equivalent cross-sectional area of
truss member is computed as mean of two values:
--equivalent cross-sectional area obtained for model assuming full
rotational restraint at both ends of steel part of cross beam;
--equivalent cross-sectional area obtained for model assuming full
rotational restraint at the end of steel part of cross beam at first
connector and pinned connection of cross beam to truss flange.
The former was discussed above (Fig. 6). The latter is given in
Fig. 7. Equivalent area of flange member cross-section is computed from
Eq (11):
R = 3 [E.sub.a][I.sub.ah]/[d.sup.3] w, (11)
where: d--is the beam length, m; w--is displacement of its pinned
end (Fig. 7) under the force R applied there, m.
Thus, the equivalent cross-sectional area of truss girder member is
taken as:
[A.sup.mean.sub.a equ] = [A.sup.fixed.sub.a equ] +
[A.sup.pinned.sub.a equ]/2, (12)
where [A.sup.fixed.sub.a equ] and [A.sup.pinned.sub.a
equ]--equivalent cross-sectional area of truss member flange taken from
model in Fig. 6 and Fig. 7 respectively; [A.sup.mean.sub.a equ]--the
mean value of those two.
For all cases described the general provision is made that cross
beam to truss flange connection as well as connectors between concrete
slab and cross beam are able to transfer forces from truss flanges to
the slab.
Thus, the equivalent area of truss flange adjacent to the composite
deck regarding the deck and truss girders cooperation in 2D model is
set.
4. Application example
4.1. Experiment
The test loading of "twin" railway truss spans with
composite decks, shown in Fig. 1, was carried out. Their decks are
connected to bottom flanges of truss girders at their nodes and between
them.
Geometrical data of the "twin" spans are:
--theoretical span length--51.0 m,
--truss girder spacing--5.30 m,
--truss girder theoretical height--8.00 m,
--bottom flange node spacing--12.75 m,
--cross beam spacing--3.19 m.
Geometrical characteristics of bridge span member are put together
in Table 1. For member symbols see Fig. 1. The explanation of indices:
1) half of element near D11, 2) half of element near D13, 3) half of
element near D13, 4) half of element near D21, 5) half of section near
D14, 6) half of element near D22.
Fig. 8 shows deck slab cross-section: at mid-span (between cross
beams--A-A) and over cross beam web (B-B). Connectors and reinforcing
bars is shown. Composite deck construction details are:
--slab transverse expansion joint at mid-span,
--slab thickness: variable, 0.25-0.33 m,
--concrete: [f.sub.cd] ~ 20 MPa, [E.sub.c] ~ 35 GPa
--longitudinal reinforcement: top and bottom layers of 32 bars of
25 mm diameter of 18G2-b grade steel,
--connectors of angles 160x160x15 mm, with stiffeners.
The same locomotive set was used for both spans (Fig. 9). In the
case of both spans the railway track is located symmetrically between
truss girders. Thus, four truss girders were test loaded in the same
way.
During testing the following were recorded:
--vertical displacement of bottom flange nodes: "[1/4]
[L.sub.t]", "[1/2] [L.sub.t]", "[3/4]
[L.sub.t]", under loading scheme as in Fig. 9,
--strains at the top of truss bottom flanges at cross-section
located 3.5 m away from the "" node towards mid-span, recorded
while locomotive set went through the span at very low speed ([less than
or equal to] 5 km/h)--quasi-static loading.
4.2. Numerical verification
To verify the test loading results two computational models were
created:
--the 3D model consisted of beam elements (truss girders, cross
beams, wind bracings), creating space frame, and shell elements (deck
slab);
--the 2D model consisted of beam elements only.
The 3D model (Fig. 10) required shell elements to be placed at the
true level of deck slab mid-plane. Hence, kinematic constraints were
applied to appropriate pairs of nodes, of cross beams and truss bottom
flange to ensure compatibility of displacements. The constraints are
shown in Fig. 10 as short vertical elements connecting girders and deck.
The 3D model regards eccentricities in truss cross-bracings to
bottom flange connections as well as different levels of neutral axes of
steel cross beams, composite cross beams, slab mid-plane and supports.
This model was used to assess internal forces acting at cross beam
to truss flange connection, shear forces at cross beam to concrete slab
connection and longitudinal forces in concrete slab. Preliminary
assessment proved that composite deck is able to resist additional
internal forces resulted from deck and girders cooperation. Assumption
of uncracked concrete slab behaviour was justified.
The 2D model was then created. It is shown in Fig. 11. It accounts
for composite deck by means of equivalent cross-sectional areas of
members of truss flange adjacent to the deck (bottom flange).
[FIGURE 8 OMITTED]
[FIGURE 9 OMITTED]
[FIGURE 10 OMITTED]
[FIGURE 11 OMITTED]
To compute equivalent cross-sectional area of member of truss
flange adjacent to deck, the procedure described earlier was applied.
Due to limited truss flange flexural rigidity in horizontal plane,
partial rotational restraint of cross beam at its connection to truss
flange was assumed. Equivalent cross-sectional area of truss flange
members was computed according to Eq (10).
The model regards eccentricities in cross-bracings to bottom flange
connections, different levels of neutral axes of truss bottom flange
members and level of supports as well as the fact that live load is
applied to girders at connections of cross beams.
[FIGURE 12 OMITTED]
Characteristics of structural elements were assumed according to
design specifications. They are put together in Table 1 (for
symbols--Fig. 2).
For the 2D model equivalent cross-sectional areas of bottom flange
members were computed. The procedure presented above was applied.
Uncracked behaviour of concrete slab was assumed. Results are given in
Table 2. Moments of inertia of truss bottom flange members were taken as
in Table 1.
Table 2 gives three values of equivalent cross-sectional areas for
each member of bottom flange. Indices in Table 2 comply with those in
Table 1. Explanation of symbols is as follows:
[A.sub.X]--actual cross-sectional area of flange member,
[A.sub.X.sup.f]--equivalent cross-sectional area of flange member;
assumed fixed end of cross beam at its connection to truss flange,
[A.sub.X.sup.p]--equivalent cross-sectional area of flange member;
assumed pinned connection of cross beam connection to truss flange,
[A.sub.X.sub.m]--mean equivalent cross-sectional area of flange
member; assumed partial rotational restraint of cross beam at its
connection to truss flange; computed as mean of [A.sub.X.sub.c] and
[A.sub.X.sub.p].
4.3. Recorded versus computed results
Recorded and computed results are presented against each other
below.
Table 3 gives the recorded and computed displacements. Recorded
values are mean values for population of four truss girders. A positive
sign marks displacement downwards.
3D and 2D computational models were also used to find normal stress
at the top fibre of truss bottom flange at
analysed cross-section (3.5 m away from the "[1/4]
[L.sub.t]" node towards mid-span). They were computed as follows:
[[sigma].sub.3D] = [N.sub.3D]/[A.sub.X] + [[M.sub.3D]/[I.sub.Y]] z,
(12)
[[sigma].sub.2D] = [kappa][N.sub.2D]/[A.sub.X] +
[[M.sub.2D]/[I.sub.Y]] z, (13)
where [[sigma].sub.2D], [[sigma].sub.3D]--normal stresses based on
2D and 3D model analysis respectively, kPa; [N.sub.2D], [M.sub.2D] and
[N.sub.3D], [M.sub.3D]--internal forces obtained from 2D and 3D model
analysis respectively, kN and kNm; [A.sub.X]--cross sectional area of
truss member, [m.sup.2]; [I.sub.Y]--moment of inertia of truss member in
respect to horizontal axis, [m.sup.4]; z--distance from truss flange
member neutral axis to its top fibre, m; [kappa] is computed as:
[kappa] = [A.sub.X]/[A.sub.X.sup.m]. (14)
Fig. 12 presents variations of normal stress based on strains
recorded at the top fibre of truss bottom flange and computed according
to Eqs (12) and (13).
Table 4 puts together the recorded and computed values of four
peaks of the stress diagram.
2D and 3D computational models overestimate peak stresses in truss
flange in comparison to recorded ones. The overestimation of the largest
peak is 17% in the case of 3D model and 24% in the case of 2D model. The
difference is caused by bending in horizontal plane and torsion that are
not taken into account in 2D modelling. In general the accuracy of
stress variation assessment provided by both models is similar.
5. Conclusions
1. It is possible to use a relatively easy and compact analytical
technique to assess composite deck influence on span flexural stiffness
and stress level in structural members.
2. The described analytical procedure regards various structural
arrangements of cross beam to truss flange connection as well as various
deck slab longitudinal rigidity under tensile forces
(uncracked/cracked).
3. Equivalent cross-sectional areas of members of truss flange
adjacent to the deck, resulted from the procedure, are easy to introduce
in 2D computational model of truss bridge span.
4. The accuracy of assessment of span flexural stiffness and
internal forces distribution provided by the presented procedure is
similar to accuracy available in 3D beam/shell element model of truss
bridge span.
5. The presented approach to railway truss bridge assessment is
suitable for preliminary design and verification of other computational
methods.
Caption: Fig. 1. General view of truss bridge with composite deck
Caption: Fig. 2. Cross-section of railway bridge span with
composite deck (concrete slab shaded)
Caption: Fig. 3. Example of cross beam to truss girder flange
connection; wind bracings gusset plate is visible; picture taken prior
to casting of concrete slab
Caption: Fig. 4. Additional analysis to set equivalent
cross-sections of truss flange members
Caption: Fig. 5. General scheme of analysis of the truss flange
member adjacent to deck
Caption: Fig. 6. Beam rotationally fixed at both ends under
concentrated load at one of its ends
Caption: Fig. 7. Clamped/pinned beam under concentrated load at
pinned end
Caption: Fig. 8. Cross-section of deck slab: in-between cross beams
(A-A) and over cross beam (B-B)
Caption: Fig. 9. Analysed test loading scheme with locomotive set
Caption: Fig. 10. Beam-and-shell element computational model
Caption: Fig. 11. Beam element computational model
Caption: Fig. 12. Strain variations at top fibre of truss bottom
flange
doi: 10.3846/bjrbe.2014.15
References
Ahlgrimm, J.; Lohrer, I. 2005. Erneuerung der Eisenbahnuberfuhrung
in Fulda-Horas uber die Fulda [A New Rail Bridge Crosses the River Fulda
in Fulda-Horas], Stahlbau 74(2): 114-120.
http://dx.doi.org/10.1002/stab.200590002
Brencich, A.; Gambarotta, L. 2009. Assessment Procedure and
Rehabilitation of Riveted Railway Girders: the Campasso Bridge,
Engineering Structures 31(1): 224-239.
http://dx.doi.org/10.1016/j.engstruct.2008.07.007
Caglayan, O.; Ozakgul, K.; Tezer, O. 2012. Assessment of Existing
Steel Railway Bridges, Journal of Constructional Steel Research 69(1):
54-63. http://dx.doi.org/10.1016/j.jcsr.2011.08.001
Cheng, B.; Qian, O.; Sun, H. 2013a. Steel Truss Bridges with Welded
Box-Section Members and Bowknot Integral Joints, Part I: Linear and
Non-Linear Analysis, Journal of Constructional Steel Research 80:
465-474. http://dx.doi.org/10.1016/j.jcsr.2012.08.006
Cheng, B.; Qian, O.; Sun, H. 2013b. Steel Truss Bridges with Welded
Box-Section Members and Bowknot Integral Joints, Part II: Minimum Weight
Optimization, Journal of Constructional Steel Research 80: 475-482.
http://dx.doi.org/10.1016/j.jcsr.2012.09.012
Dorrer, G. 2009. Die neue Eisenbahnbrucke uber den Donaukanal und
den Winterhafen in Wien [The New Railway Bridge Across the Donaukanal
and the Winterhafen in Vienna], Stahlbau 78(2): 70-77.
http://dx.doi.org/10.1002/stab.200910007
Hou, W.-Q.; Ye, M.-X. 2011. Design Methods of Headed Studs for
Composite Decks of Through Steel Bridges in High-Speed Railway, Journal
of Central South University of Technology 18: 946-952.
http://dx.doi.org/10.1007/s11771-011-0785-4
Kalanta, S.; Atkociunas, J.; Ulitinas, T.; Grigusevicius, A. 2012.
Optimization of Bridge Trusses Height and Bars Cross-Sections, The
Baltic Journal of Road and Bridge Engineering 7(2): 112-119.
http://dx.doi.org/10.3846/bjrbe.2012.16
Karlikowski, J. 1995. Projekt wzmocnienia mostu kratowego o malej
sztywnosci [Design of Strengthening of Truss Bridge with Low Stiffness],
in Proc. of the 9th International Conference on Metal Structures: vol.
3. Krakow, Poland, 1995, 261-273.
Kim, H.-H.; Shim, C. S. 2009. Experimental Investigation of Double
Composite Twin-Girder Railway Bridges, Journal of Constructional Steel
Research 65(6): 1355-1365. http://dx.doi.org/10.1016/j.jcsr.2009.02.004
Liao, M.; Okazaki, T. 2009. A Computational Study of the I-35
Bridge Collapse. Research Report No. CTS 09-29. Center for
Transportation Studies, University of Minnesota. 95 p.
Machelski, C. 1998. Zastosowanie metody kinematycznej do
wyznaczania funkcji wplywu sil wewnetrznych w ukladach pretowych
[Application of Kinematics Method to Setting Influence Functions of
Internal Forces in Bar-Element Structures], Inzynieria i Budownictwo
7(98): 372-375.
Pedro, J. O.; Reis, A. J. 2010. Nonlinear Analysis of Composite
Steel-Concrete Cable-Stayed Bridges, Engineering Structures 32(9):
2702-2716. http://dx.doi.org/10.1016/j.engstruct.2010.04.041
Reintjes, K.; Gebert, G. 2006. Das Zugelgurt-Fachwerk der
Muldebrucke Wurzen [The Truss-Stayed Structure of the Mulde Bridge
Wurzen], Stahlbau 75(8): 613-623.
http://dx.doi.org/10.1002/stab.200610063
Shim, C.-S.; Kim, D.-W.; Nhat, M. X. 2014. Performance of Stud
Clusters on Precast Bridge Decks, The Baltic Journal of Road and Bridge
Engineering 9(1): 43-51. http://dx.doi.org/10.3846/bjrbe.2014.06
Siekierski, W. 2010. Kolejowe przesla kratownicowe z pasem sztywnym
[Railway Truss Bridges with Rigid Flange], Inzynieria i Budownictwo 2:
97-99.
Xu, C.; Sugiura, K. 2014. Analytical Investigation on Failure
Development of Group Studs Shear Connector in Push-Out Specimen under
Biaxial Load Action, Engineering Failure Analysis 37: 75-85.
http://dx.doi.org/10.1016/j.engfailanal.2013.11.010
Xu, X.; Liu, Y.; He, J. 2014. Study on Mechanical Behavior of
Rubber-Sleeved Studs for Steel and Concrete Composite Structures,
Construction and Building Materials 53: 533-546.
http://dx.doi.org/10.1016/j.conbuildmat.2013.12.011
Xu, C.; Sugiura, K. 2013. Parametric Push-Out Analysis on Group
Studs Shear Connector Under, Effect of Bending-induced Concrete Cracks,
Journal of Constructional Steel Research 89: 86-97.
http://dx.doi.org/10.1016/j.jcsr.2013.06.011
Xu, C.; Sugiura, K.; Wu, C.; Su, Q. 2012. Parametrical Static
Analysis on Group Studs with Typical Push-Out Tests, Journal of
Constructional Steel Research 72: 84-96.
http://dx.doi.org/10.1016/j.jcsr.2011.10.029
Xue, D.; Liu, Y.; Yu, Z.; He, J. 2012. Static Behavior of
Multi-Stud Shear Connectors for Steel-Concrete Composite Bridge, Journal
of Constructional Steel Research 74: 1-7.
http://dx.doi.org/10.1016/j.jcsr.2011.09.017
Zongyu, G. 2012. Zhengzhou Yellow River Road-Cum-Railway Bridge,
China, Stahlbau 81(2): 151-155. http://dx.doi.org/10.1002/stab.201201522
Received 29 December 2011; accepted 22 June 2012
Wojciech Siekierski
Dept of Bridges, Poznan University of Technology, ul. Piotrowo 5,
61-138 Poznan, Poland
E-mail: Wojciech.Siekierski@put.poznan.pl
Table 1. Cross-sectional characteristics of bridge members
Model element [A.sub.X], [A.sub.X], [A.sub.Y], [A.sub.Z],
[cm.sup.2] [cm.sup.4] [cm.sup.4] [cm.sup.4]
D11, D12 (1) 364 231 1 669 197 33 358
D12 (2), D13, 394 337 1 878 496 39 608
D14 (3)
D14 (4), 494 1012 2 586 517 60 441
D21 (5)
D21 (6), 474 794 2 466 298 56 274
D22/D24
G1 310 432 158 183 41 711
G2 405 958 221 373 58 398
K1 244 243 37 514 87 208
K2 184 110 25 014 59 471
K3 134 58 12 803 40 572
K4 98 32 4503 27 393
Steel cross beam 170 150 157 119 5 439
Composite cross beam 599 57 000 614 000 810 000
Table 2. Equivalent of cross-sectional area of bottom
flange members in 2D computational model
Equivalent area
Model element [A.sub.X], [A.sub.x [A.sub.x. [A.sub.x.
[cm.sup.2] .sup.f] sup.f] sup.f]
[cm.sup.4] [cm.sup.4] [cm.sup.4]
D11, D12 (1) 364 684 464 574
D12 (2), D13, 394 714 494 604
D14 (3)
D14 (4), D21 (5) 494 814 594 704
D21 (6), D22+D24 474 794 574 684
Note: indices are the same as for Table 1.
Table 3. Displacement u, mm, of bottom flange nodes
Location of bottom flange node
Data source [1/"4][L.sub.t"] [1/"2][L.sub.t"] [3/4][L.sub.t"]
Recorded 8.16 11.78 8.07
Model 3D 9.43 13.35 9.29
Model 2D 9.29 13.21 9.16
Relationship: [u.sub.computed]
[u.sub.recorded]
Model 3D 1.16 1.13 1.15
Model 2D 1.14 1.12 1.14
Table 4. Recorded and computed normal stress peaks, MPa, at
the top fibre of bottom flange member
Data source Chart characteristic points
Peak 1 Peak 2 Peak 3 Peak 4
Recorded 4.4 10.5 10.1 8.4
Model 3D 7.1 12.3 11.1 9.3
Model 2D 7.1 13.0 11.4 9.5
Relationship: [[sigma].sub.computed]/
[[sigma].sub.recorded]
Peak 1 Peak 2 Peak 3 Peak 4
Model 3D 1.61 1.17 1.10 1.11
Model 2D 1.61 1.24 1.13 1.13