Testing of mechanical-physical properties of aggregates, used for producing asphalt mixtures, and statistical analysis of test results/Skaldos, naudojamos asfalto misiniams gaminti, fiziniu bei mechaniniu savybiu tyrimai ir rezultatu statistine analize/ Asfaltbetona maisijumu razosanai izmantoto mineralmaterialu fizikali mehanisko ipasibu testesana un testa rezultatu statistiska analize/ Asfaltsegude ....
Bulevicius, Matas ; Petkevicius, Kazys ; Zilioniene, Daiva 等
Table 1. Summary of mechanical-physical properties quality
indices values
Quality index
Crushed
Statistics Notation rock F LA
Value
Index X [X.sub.min] Granite 0.50% 19
Dolomite 1w.00% 26
Gravel 1.50% 35
[X.sub.max] Granite 0.02% 12
Dolomite 0.10% 19
Gravel 0.20% 21
Amplitude [X.sub.max] - Granite 0.48% 7
[X.sub.min] Dolomite 0.90% 7
Gravel 1.30% 14
Mean [bar.X] Granite 0.13% 15.53
Dolomite 0.24% 21.10
Gravel 0.70% 27.05
Standard [S.sub.x] Granite 0.078% 2.112
deviation Dolomite 0.134% 1.556
Gravel 0.478% 3.992
Corrected [S'.sub.x] Granite 0.079% 2.170
standard Dolomite 0.135% 1.594
deviation Gravel 0.507% 4.115
Dispersion [S.sup.2.sub.x] Granite 0.006 (%) (2) 4.460
Dolomite 0.018 (%) (2) 2.419
Gravel 0.229 (%) (2) 15.938
Sample [g.sub.1] Granite 12.410 -0.833
asymmetry Dolomite 14.060 3.397
coefficient Gravel -1.202 -0.178
Sample excess [g.sub.2] Granite 3.280 -0.332
coefficient Dolomite 2.807 1.304
Gravel 0.708 0.587
Individual n Granite 47 19
data sample Dolomite 67 21
Gravel 9 17
Quality index
Crushed
Statistics Notation rock SZ
Index X [X.sub.min] Granite 19.7%
Dolomite 26.3%
Gravel 26.7%
[X.sub.max] Granite 14.8%
Dolomite 18.9%
Gravel 19.1%
Amplitude [X.sub.max] - Granite 4.9%
[X.sub.min] Dolomite 7.4%
Gravel 7.6%
Mean [bar.X] Granite 17.23%
Dolomite 22.23%
Gravel 23.47%
Standard [S.sub.x] Granite 1.126%
deviation Dolomite 1.356%
Gravel 2.189%
Corrected [S'.sub.x] Granite 1.133%
standard Dolomite 1.361%
deviation Gravel 2.253%
Dispersion [S.sup.2.sub.x] Granite 1.268 (%) (2)
Dolomite 1.838 (%) (2)
Gravel 4.793 (%) (2)
Sample [g.sub.1] Granite 0.140
asymmetry Dolomite 0.719
coefficient Gravel -0.655
Sample excess [g.sub.2] Granite 0.008
coefficient Dolomite 0.526
Gravel -0.599
Individual n Granite 81
data sample Dolomite 135
Gravel 18
Quality index
Crushed
Statistics Notation rock PSV
Index X [X.sub.min] Granite 50 9
Dolomite 41 16
Gravel -- 20
[X.sub.max] Granite 53 6
Dolomite 47 14
Gravel 14
Amplitude [X.sub.max] - Granite 3 3
[X.sub.min] Dolomite 6 2
Gravel - 6
Mean [bar.X] Granite 51.47 6.76
Dolomite 44.10 15.71
Gravel -- 17.80
Standard [S.sub.x] Granite 0.884 0.750
deviation Dolomite 1.578 0.547
Gravel -- 1.222
Corrected [S'.sub.x] Granite 0.915 0.768
standard Dolomite 1.663 0.561
deviation Gravel -- 1.265
Dispersion [S.sup.2.sub.x] Granite 0.782 0.562
Dolomite 2.490 0.299
Gravel -- 1.493
Sample [g.sub.1] Granite -0.484 2.336
asymmetry Dolomite 0.784 3.182
coefficient Gravel -- 6.312
Sample excess [g.sub.2] Granite 0.113 1.184
coefficient Dolomite -0.014 -1.920
Gravel -- -1.769
Individual n Granite 15 21
data sample Dolomite 10 21
Gravel -- 15
Quality index
Crushed
Statistics Notation rock [[rho].sub.rd]
Index X [X.sub.min] Granite 2.64 Mg/[m.sup.3]
Dolomite 2.63 Mg/[m.sup.3]
Gravel 2.60 Mg/[m.sup.3]
[X.sub.max] Granite 2.76 Mg/[m.sup.3]
Dolomite 2.78 Mg/[m.sup.3]
Gravel 2.65 Mg/[m.sup.3]
Amplitude [X.sub.max] - Granite 0.12 Mg/[m.sup.3]
[X.sub.min] Dolomite 0.15 Mg/[m.sup.3]
Gravel 0.05 Mg/[m.sup.3]
Mean [bar.X] Granite 2.713 Mg/[m.sup.3]
Dolomite 2.723 Mg/[m.sup.3]
Gravel 2.702 Mg/[m.sup.3]
Standard [S.sub.x] Granite 0.022 Mg/[m.sup.3]
deviation Dolomite 0.028 Mg/[m.sup.3]
Gravel 0.023 Mg/[m.sup.3]
Corrected [S'.sub.x] Granite 0.022 Mg/[m.sup.3]
standard Dolomite 0.028 Mg/[m.sup.3]
deviation Gravel 0.024 Mg/[m.sup.3]
Dispersion [S.sup.2.sub.x] Granite 0.001 (Mg/[m.sup.3]) (2)
Dolomite 0.001 (Mg/[m.sup.3]) (2)
Gravel 0.001 (Mg/[m.sup.3]) (2)
Sample [g.sub.1] Granite 1.683
asymmetry Dolomite 1.321
coefficient Gravel 8.432
Sample excess [g.sub.2] Granite -0.942
coefficient Dolomite -0.821
Gravel 2.450
Individual n Granite 65
data sample Dolomite 95
Gravel 16
Table 2. Summary of zero hypothesis values
Quality
Hypothesis Status index
[H.sub.0]: F values of resistance to rejected F
[[bar.X].sub.g] = freezing and thawing
[[bar.Y].sub.d] means of crushed granite
and crushed dolomite
are approximate
[H.sub.0]: SZ values of resistance rejected
[[bar.X].sub.g] = to fragmentation means of
[[bar.Y].sub.d] crushed granite and
crushed dolomite are
approximate
[H.sub.0]: SZ values of resistance no SZ
[[bar.X].sub.g] = to fragmentation means rejected
[[bar.Y].sub.gr] of crushed granite and
crushed gravel are
approximate
[H.sub.0]: SZ values of resistance rejected
[[bar.X].sub.d] = to fragmentation means
[[bar.Y].sub.gr] of crushed dolomite
and crushed gravel are
approximate
[H.sub.0]: [[rho].sub.rd] no
[[bar.X].sub.g] = values of dry density rejected
[[bar.Y].sub.d] means of crushed granite
and crushed dolomite are
approximate
[H.sub.0]: [[rho].sub.rd] no [[rho]
[[bar.X].sub.g] = values of dry density rejected .sub.rd]
[[bar.Y].sub.gr] means of crushed granite
and crushed gravel are
approximate
[H.sub.0]: [[rho].sub.rd] rejected
[[bar.X].sub.d] = values of dry density
[[bar.Y].sub.gr] means of crushed
dolomite and crushed
gravel are approximate
Mean
Hypothesis
[H.sub.0]: [[bar.X].sub.g] = [[bar.Y].sub.d] =
[[bar.X].sub.g] = 0.13 (%) 0.24 (%)
[[bar.Y].sub.d]
[H.sub.0]: [[bar.X].sub.g] = [[bar.Y].sub.d] =
[[bar.X].sub.g] = 17.23 (%) 22.23 (%)
[[bar.Y].sub.d]
[H.sub.0]: [[bar.X].sub.g] = [[bar.Y].sub.gr] =
[[bar.X].sub.g] = 17.23 (%) 23.47 (%)
[[bar.Y].sub.gr]
[H.sub.0]:
[[bar.X].sub.d] = [[bar.X].sub.d] = [[bar.Y].sub.gr] =
[[bar.Y].sub.gr] 22.23 (%) 23.47 (%)
[H.sub.0]: [[bar.X].sub.g] = [[bar.Y].sub.gr] =
[[bar.X].sub.g] = 2.713 Mg/[m.sup.3] 2.723 Mg/[m.sup.3]
[[bar.Y].sub.d]
[H.sub.0]: [[bar.X].sub.g] = [[bar.Y].sub.gr] =
[[bar.X].sub.g] = 2.713 Mg/[m.sup.3] 2.702 Mg/[m.sup.3]
[[bar.Y].sub.gr]
[H.sub.0]: [[bar.X].sub.d] = [[bar.Y].sub.gr] =
[[bar.X].sub.d] = 2.723 Mg/[m.sup.3] 2.702 Mg/[m.sup.3]
[[bar.Y].sub.gr]
Individual
data sample
Hypothesis Dispersion n m
[H.sub.0]: [S.sup.2.sub.g] = [S.sup.2.sub.d] = 67 47
[[bar.X].sub.g] = 0.006 (%) (2) 0.18 (%) (2)
[[bar.Y].sub.d]
[H.sub.0]: [S.sup.2.sub.g] = [S.sup.2.sub.d] = 81 135
[[bar.X].sub.g] = 1.268 (%) (2) 1.838 (%) (2)
[[bar.Y].sub.d]
[H.sub.0]: [S.sup.2.sub.g] = [S.sup.2.sub.gr] = 81 18
[[bar.X].sub.g] = 1.268 (%) (2) 4.793 (%) (2)
[[bar.Y].sub.gr]
[H.sub.0]:
[[bar.X].sub.d] = [S.sup.2.sub.d] = [S.sup.2.sub.gr] = 135 18
[[bar.Y].sub.gr] 1.838 (%) (2) 4.793 (%) (2)
[H.sub.0]: [S.sup.2.sub.g] = [S.sup.2.sub.d] = 65 95
[[bar.X].sub.g] = 1.268 (Mg/ 0.001 (Mg/
[[bar.Y].sub.d] [m.sup.3]) (2) [m.sup.3]) (2)
[H.sub.0]: [S.sup.2.sub.g] = [S.sup.2.sub.gr] = 65 16
[[bar.X].sub.g] = 1.268 (Mg/ 0.001 (Mg/
[[bar.Y].sub.gr] [m.sup.3]) (2) [m.sup.3]) (2)
[H.sub.0]: [S.sup.2.sub.d] = [S.sup.2.sub.gr] = 96 16
[[bar.X].sub.d] = 0.001 (Mg/ 0.001 (Mg/
[[bar.Y].sub.gr] [m.sup.3]) (2) [m.sup.3]) (2)
Value
Statistical Critical
Hypothesis [T.sub.stat] [T.sub.crit]
[H.sub.0]: 5.39 1.98
[[bar.X].sub.g] =
[[bar.Y].sub.d]
[H.sub.0]: -23.27 1.96
[[bar.X].sub.g] =
[[bar.Y].sub.d]
[H.sub.0]: -1.77 1.96
[[bar.X].sub.g] =
[[bar.Y].sub.gr]
[H.sub.0]:
[[bar.X].sub.d] = -17.92 1.96
[[bar.Y].sub.gr]
[H.sub.0]: -0.57 1.96
[[bar.X].sub.g] =
[[bar.Y].sub.d]
[H.sub.0]: 0.30 1.96
[[bar.X].sub.g] =
[[bar.Y].sub.gr]
[H.sub.0]: 2.68 1.96
[[bar.X].sub.d] =
[[bar.Y].sub.gr]
Table 3. Correlation dependencies between the values
of quality indices of different crushed rocks
Individual
data
Correlation Crushed sample,
Dependency Type rock n
r([X.sub.LA], no at all granite 11
[X.sub.F]) very weak dolomite 12
r([X.sub.SZ], very weak granite 25
[X.sub.F]) weak dolomite 38
[MATHEMATICAL weak granite 26
EXPRESSION NOT weak dolomite 37
REPRODUCIBLE
IN ASCII]
r([X.sub.LA], average granite 14
[X.sub.SZ]) strong dolomite 16
strong gravel 10
[MATHEMATICAL no at all granite 11
EXPRESSION NOT average dolomite 16
REPRODUCIBLE weak gravel 10
IN ASCII]
[MATHEMATICAL average granite 66
EXPRESSION NOT no at all dolomite 94
REPRODUCIBLE weak gravel 16
IN ASCII]
Correlation
Dependency Type Mean
r([X.sub.LA], no at all [[bar.X].sub.LA] = 14.91
[X.sub.F]) very weak [[bar.X].sub.LA] = 21.00
r([X.sub.SZ], very weak [[bar.X].sub.SZ] = 17.00%
[X.sub.F]) weak [[bar.X].sub.SZ] = 22,03%
[MATHEMATICAL weak [MATHEMATICAL EXPRESSION
EXPRESSION NOT NOT REPRODUCIBLE
REPRODUCIBLE IN ASCII]
IN ASCII] weak [MATHEMATICAL EXPRESSION
NOT REPRODUCIBLE
IN ASCII]
r([X.sub.LA], average [[bar.X].sub.LA] = 15.14
[X.sub.SZ]) strong [[bar.X].sub.LA] = 20.75
strong [[bar.X].sub.LA] = 25.50
[MATHEMATICAL no at all [[bar.X].sub.LA] = 15.50
EXPRESSION NOT average [[bar.X].sub.LA] = 20.24
REPRODUCIBLE weak [[bar.X].sub.LA] = 25.50
IN ASCII]
[MATHEMATICAL average [[bar.X].sub.SZ] = 17.31%
EXPRESSION NOT no at all [[bar.X].sub.SZ] = 22,32%
REPRODUCIBLE weak [[bar.X].sub.SZ] = 23.20(%)
IN ASCII]
Correlation
Dependency Type Mean
r([X.sub.LA], no at all [[bar.X].sub.F] = 0.16%
[X.sub.F]) very weak [[bar.X].sub.F] = 0.31%
r([X.sub.SZ], very weak [[bar.X].sub.F] = 0.15%
[X.sub.F]) weak [[bar.X].sub.F] = 0.25%
[MATHEMATICAL weak [[bar.X].sub.F] = 0.15%
EXPRESSION NOT weak [[bar.X].sub.F] = 0.25%
REPRODUCIBLE
IN ASCII]
r([X.sub.LA], average [[bar.X].sub.SZ] = 17.17%
[X.sub.SZ]) strong [[bar.X].sub.SZ] = 21.41%
strong [[bar.X].sub.SZ] = 23.07%
[MATHEMATICAL no at all [MATHEMATICAL EXPRESSION
EXPRESSION NOT NOT REPRODUCIBLE IN ASCII]
REPRODUCIBLE average [MATHEMATICAL EXPRESSION
IN ASCII] NOT REPRODUCIBLE IN ASCII]
weak [MATHEMATICAL EXPRESSION
NOT REPRODUCIBLE IN ASCII]
[MATHEMATICAL average [MATHEMATICAL EXPRESSION
EXPRESSION NOT NOT REPRODUCIBLE IN ASCII]
REPRODUCIBLE no at all [MATHEMATICAL EXPRESSION
IN ASCII] NOT REPRODUCIBLE IN ASCII]
weak [MATHEMATICAL EXPRESSION
NOT REPRODUCIBLE IN ASCII]
Correlation
Dependency Type Standart deviation
r([X.sub.LA], no at all [S.sup.2.sub.LA] = 3.537
[X.sub.F]) very weak [S.sup.2.sub.LA] = 1.582
r([X.sub.SZ], very weak [S.sup.2.sub.SZ] = 2.285 (%) (2)
[X.sub.F]) weak [S.sup.2.sub.SZ] = 1.176 (%) (2)
[MATHEMATICAL weak [MATHEMATICAL EXPRESSION
EXPRESSION NOT NOT REPRODUCIBLE IN ASCII]
REPRODUCIBLE weak [MATHEMATICAL EXPRESSION
IN ASCII] NOT REPRODUCIBLE IN ASCII]
r([X.sub.LA], average [S.sup.2.sub.LA] = 4.551
[X.sub.SZ]) strong [S.sup.2.sub.LA] = 1.438
strong [S.sup.2.sub.LA] = 8.650
[MATHEMATICAL no at all [S.sup.2.sub.LA] = 9.250
EXPRESSION NOT average [S.sup.2.sub.LA] = 5.592
REPRODUCIBLE weak [S.sup.2.sub.LA] = 8.650
IN ASCII]
[MATHEMATICAL average [S.sup.2.sub.SZ] = 2.23 (%) (2)
EXPRESSION NOT no at all [S.sup.2.sub.SZ] = 2.115 (%) (2)
REPRODUCIBLE weak [S.sup.2.sub.SZ] = 4.588 (%) (2)
IN ASCII]
Correlation
Dependency Type Standart deviation
r([X.sub.LA], no at all [S.sup.2.sub.F] = 0.020 (%) (2)
[X.sub.F]) very weak [S.sup.2.sub.F] = 0.014 (%) (2)
r([X.sub.SZ], very weak [S.sup.2.sub.F] = 0.010 (%) (2)
[X.sub.F]) weak [S.sup.2.sub.F] = 0.028 (%) (2)
[MATHEMATICAL weak [S.sup.2.sub.F] = 0.010 (%) (2)
EXPRESSION NOT weak [S.sup.2.sub.F] = 0.010 (%) (2)
REPRODUCIBLE
IN ASCII]
r([X.sub.LA], average [S.sup.2.sub.SZ] = 1.491 (%) (2)
[X.sub.SZ]) strong [S.sup.2.sub.SZ] = 1.549 (%) (2)
strong [S.sup.2.sub.SZ] = 4.888 (%) (2)
[MATHEMATICAL no at all [MATHEMATICAL EXPRESSION
EXPRESSION NOT NOT REPRODUCIBLE IN ASCII]
REPRODUCIBLE average [MATHEMATICAL EXPRESSION
IN ASCII] NOT REPRODUCIBLE IN ASCII]
weak [MATHEMATICAL EXPRESSION
NOT REPRODUCIBLE IN ASCII]
[MATHEMATICAL average [MATHEMATICAL EXPRESSION
EXPRESSION NOT NOT REPRODUCIBLE IN ASCII]
REPRODUCIBLE no at all [MATHEMATICAL EXPRESSION
IN ASCII] NOT REPRODUCIBLE IN ASCII]
weak [MATHEMATICAL EXPRESSION
NOT REPRODUCIBLE IN ASCII]
Correlation
Dependency Type Regression Eq
r([X.sub.LA], no at all F = 0.1137 + 0.0030LA
[X.sub.F]) very weak F = -0.0067 + 0.015LA
r([X.sub.SZ], very weak F = -0.0366 + 0.0109SZ
[X.sub.F]) weak F = -0.4696 + 0.0325SZ
[MATHEMATICAL weak F = 0.9565 - 0.2960[[rho].sub.rd]
EXPRESSION NOT weak F = 4.3900 - 1.5185[[rho].sub.rd]
REPRODUCIBLE
IN ASCII]
r([X.sub.LA], average SZ = 12.8798 + 0.2834LA
[X.sub.SZ]) strong SZ = 6.3913 + 0.7239LA
strong SZ = 7.0183 + 0.6295LA
[MATHEMATICAL no at all [[rho].sub.rd] = 2.7311 - 0.0002LA
EXPRESSION NOT average LA = 68.2585 - 17.3785[[rho].sub.rd]
REPRODUCIBLE weak LA = 201.5217 - 65.2174[[rho].sub.rd]
IN ASCII]
[MATHEMATICAL average [[rho].sub.rd] = 2.9154 - 0.0114SZ
EXPRESSION NOT no at all SZ = 31.1151 - 3.8319[[rho].sub.rd]
REPRODUCIBLE weak SZ = -51.9965 + 27.8312[[rho].sub.rd]
IN ASCII]
Correlation Correlation
coefficient,
Dependency Type R
r([X.sub.LA], no at all 0.07
[X.sub.F]) very weak 0.16
r([X.sub.SZ], very weak 0.17
[X.sub.F]) weak 0.26
[MATHEMATICAL weak 0.15
EXPRESSION NOT weak 0.24
REPRODUCIBLE
IN ASCII]
r([X.sub.LA], average 0.50
[X.sub.SZ]) strong 0.70
strong 0.84
[MATHEMATICAL no at all 0.01
EXPRESSION NOT average 0.47
REPRODUCIBLE weak 0.18
IN ASCII]
[MATHEMATICAL average 0.46
EXPRESSION NOT no at all 0.06
REPRODUCIBLE weak 0.30
IN ASCII]
Table 4. Summary of hypotheses on the normal distribution
of the values of quality indices
Quality Hypothesis Crushed Individual
index status rock data Number of
sample, intervals,
n k
SZ rejected granite 81 5
rejected dolomite 135 5
[[rho].sub.rd] no granite 67 5
rejected
rejected dolomite 93 5
Quality Hypothesis
index status Length of
intervals, Mean
h
SZ rejected 0.98 [[bar.X].sub.SZ] = 17.24 (%)
rejected 1.48 [[bar.X].sub.SZ] = 22.61 (%)
[[rho].sub.rd] no 0.024 [MATHEMATICAL EXPRESSION
rejected NOT REPRODUCIBLE IN ASCII]
rejected 0.03 [MATHEMATICAL EXPRESSION
NOT REPRODUCIBLE IN ASCII]
Quality Hypothesis
index status
Standart deviation
SZ rejected [S.sup.2.sub.SZ] = 1.123 (%) (2)
rejected [S.sup.2.sub.SZ] = 3.583 (%) (2)
[[rho].sub.rd] no [MATHEMATICAL EXPRESSION
rejected NOT REPRODUCIBLE IN ASCII]
rejected [MATHEMATICAL EXPRESSION
NOT REPRODUCIBLE IN ASCII]
Quality Hypothesis Value
index status
Statistical Critical
[T.sup.2.sub.stat] [T.sup.2.sub.crit]
SZ rejected 7.77 5.99
rejected 37.91 5.99
[[rho].sub.rd] no 4.11 5.99
rejected
rejected 9.96 5.99