Using service challenge based evaluations for the systematic innovation of proactive remote services: a case study.
Holm, Timo ; Wiener, Peter ; Horn, Stefan 等
1. INTRODUCTION
Remote services of machines and industrial plants, often called
teleservices, are services, which have become a significant competitive
edge for machine-and plant manufacturers. Many supporting information
systems--so-called Remote Service Systems (RSS)--are developed
individually according to specific customer needs. This development is
unnecessarily time and cost intensive (Kuehl & Fay, 2009 and Spies,
2003). Instead the adaption and reuse of established solutions seems to
be the way to go (Korner, 2002).
2. PROBLEM--STANDARDIZED PROACTIVE REMOTE SERVICES
Siemens, one of the world's largest suppliers of systems and
solutions addressing the machine and plant manufacturing industry,
recognized the synergetic potentials of reusing certain remote services
across its business sectors (industry, energy and healthcare) early. A
common Remote Service Platform (cRSP) provides the basis for secure
remote maintenance (see References); it enables remote access to
connected systems and plants as well as the transmission of data and the
proactive monitoring of devices and systems with the support of agent
technology. The platform is provided as an on-demand solution with a
usage-based billing model: The customer pays for the services actually
performed by the remote technicians on the connected systems. The
benefits are a small initial investment, a low capital commitment and
good scalability.
[FIGURE 1 OMITTED]
The system's architecture consists of an underlying secure
connectivity layer that is shared by all the higher reactive and
proactive service modules (see Fig. 1). Whereas this underlying layer is
unique and common to all of Siemens' remote services, the proactive
modules were (up to a certain point) not used by all the above mentioned
sectors--including industry.
But customizing RSS to accommodate the domain of industrial
machines and plants is tricky. Usually the ad-hoc approach implies
several iterative development cycles, a process which threatens an
organisation to possibly loose the competitive edge due to reasons of
time. In order to perform a precision landing when it comes to necessary
changes in established RSS, a systematic approach for the innovation of
industrial information systems is needed.
3. METHODOLOGY--CHALLENGE-BASED EVALUATION
The challenge based evaluation methodology (Holm et al., 2008)
concentrates in its core on requirements industrial information systems
have to cover when to be used successfully in the industrial plant
business. The business fields Engineering, Commissioning, Operation,
Modernization and Service, which correspond to the five basic lifecycle
phases of every plant, have been researched in order to extract critical
success factors that can be influenced considerably by software systems
(e.g. RSS). In case of the business field Service a total of four
central challenges has been extracted, which correspond to the four
layers of an architecture. The components of this generic architecture
cover important technical functions that need to be addressed in order
to provide plant services like maintenance or repair optimally:
* Data Handling--The bottom layer of the architecture model
contains three databases, which are responsible for archiving process,
system, and installed base data. Additionally one component is needed to
compact system and process data, which in practice can grow up to
several terabytes per month within facilities manufacturing 24/7.
* Information Processing--The data processing area takes care of
data conditioning, consistency checks and analysis of information coming
from the plant. This area additionally uses archived information coming
from databases below.
* View Concepts--To control the presentation of information the
component view is used. It usually offers either technical or economical
views and is needed as user interface for parameterization and analysis.
Service Know-How Integration--By using and parameterizing an
information system, the user is able to actively put knowledge into it.
This knowledge database constitutes the fourth part of the architecture.
[FIGURE 2 OMITTED]
[FIGURE 3 OMITTED]
[FIGURE 4 OMITTED]
[FIGURE 5 OMITTED]
Each success factor associated with the above mentioned reference
components is detailed by a number of so-called Sub-Challenges (23 in
total), which are again detailed further by best practices. Best
practices constitute concepts for addressing the superior challenges and
serve as metric for the evaluation regarding the support a user gets
when using a particular information system.
This framework allows executing reproducible and comparable
evaluations between competing information systems, which results are
independent from the particular evaluator. Best Practices of higher
value can be used in order to systematically innovate information
systems and derive development roadmaps.
The objective of the evaluations described in this contribution was
to check whether these proactive modules were sufficiently suited to
match the challenges of industrial service and to systematically
innovate them, where they didn't, in order to form a company-wide,
proactive remote service offering.
4. CONCLUSION AND OUTLOOK
Figures 2 to 4 show the results of the three evaluations; each
kiviat diagram is covering one of the proactive remote service modules
software distribution, event monitoring, and inventory management. The
23 axes represent the corresponding sub-challenges of industrial service
business, the pictured area symbolizes the level of support a user gets
when using the evaluated object. Figure 5 shows the overall service
support, offered by the combined modules. Although the evaluation
concludes, that the overall system is well suited for the challenges of
industrial service--it covers 19 of the 23 sub-challenges with best
practices ranked three or higher--three sub-challenges were rated with a
value of only two, and the sub-challenge Reporting actually scored a
one.
In order to address these (admittedly small) improvement
potentials, individual innovation roadmaps for all three proactive
modules were systematically derived. For instance in order to address
the industry specific sub-challenge of Decision Support, the coverage of
automation system family specifics was triggered and quickly piloted, in
order to allow seamless integration of proactive services during plant
engineering and manufacturing.
Currently these innovation roadmaps are implemented and tested
within several bigger, piloting projects.
5. REFERENCES
Holm, T.; Luschmann, C.; Delgado, A. & Amberg, M. (2008) A
Reference Model Based Approach for the Evaluation of Industrial Plant
Service and Asset Management Tools, Annals of DAAAM for 2008 &
Proceedings of the 19th International DAAAM Symposium, Katalinic, B.
(Ed.), pp. 601-602, 9-771726-967007,Trnava (Slovakia), October 2008,
DAAAM International, Vienna (Austria)
Korner, M. (2002) E-Service-Support im Maschinen-und Anlagenbau,
VDMA-Verlag, 978-3-8163-0449-4, Frankfurt am Main (Germany)
Kuehl, I. & Fay, A. (2009) Requirements to Remote Service
Systems--What should be provided by Remote Service Systems?,
atp--Automatisierungstechnische Praxis, Vol.
54 No. 12, 12/2009, pp. 38-43, 0178-2320
Spiess, M. (2003) Eine Methode zur Nutzenerfassung von Teleservice,
Shaker Verlag, 978-3832213046, Aachen (Germany)
*** (2010) http://www.medical.siemens.com/webapp/wcs/stores/servlet/ PSGenericDisplay?storeId=10001
&langId=3&catalogId=-3&catTree=100001&pageId=3851,
Siemens Remote Service[TM], Accessed on:2010-06-23