Defining of time-dependent contact angle of liquids on the printing plate surfaces.
Cigula, Tomislav ; Poljacek, Sanja Mahovic ; Gojo, Miroslav 等
1. INTRODUCTION
Among various surface analytical methods available, determination
of the contact angle and wettability properties remain as a standard
methods for characterisation of the different surfaces (Lander et al.,
1993). By determination of contact angle between the defined liquids and
certain surface it is possible to get the wetting properties of the
solid surface, information about the homogeneity and roughness
characteristics of the surface, information about the interaction
between the liquid and the solid. These kind of measurement fall into
the tensiometry area, where the contact angle is defined through the
interfacial energy of the solid-liquid, liquid-vapor and solid-vapor
interfaces (Hamraoui, et al., 2000). In most situations equilibrium
state is hardly to reach, which leads to the fact that precise
description of the wetting characteristics becomes quite complex. On the
other hand, the information of the contact angle depends on the speed
and direction of movement of the liquid droplet on the surface. These
facts point out that characterization of wetting properties of surfaces
is highly complex and that absolute results are hard to achieve.
Previously, the contact angle was measured and results of these
measuring were published under the assumption that the droplet of the
liquid rests on a solid surface (static contact angle). Information
about contact angle was useful for the liquid droplets whose shape
stabilises immediately after attaching to a solid surface.
The aim of this paper was to determine which changes occur in the
liquid droplets on printing plate surfaces when the contact angle is
changed over time (dynamic contact angle) (de Ruijter, 1998). The speed
of spreading depends on a combination of several factors, and can be
understood from variations in the contact angle over time (Fig. 1).
[FIGURE 1 OMITTED]
Results obtained in this paper will be usefull for two reasons. The
first one will be usefull in offset reproduction where the functionality
of the printing plate depends on the fountain solution and printing ink
adsorption. The second goal is directed to easier determination of
contact angle and possible standardization of the measurements based on
goniometry principles.
2. INFORMATION
Aluminium surface suitable for use as an offset printing plate
consists of two different areas: ink-receptive image areas which carry a
photosensitive coating and fountain solution-retaining non-image areas.
In order to improve the fountain solution adhesion on the aluminium
oxide film and to enhance the adhesion of the photosensitive coating
during the printing process the foil is roughened by electrochemical
graining and anodic oxidation (Dimogerontakis et al., 2006; Limbach et
al., 2003). During the printing process, printing plates are first
covered with fountain solution which has to be adsobed on nonprinting
areas (aluminium-oxide), and afterwards is covered with printing ink
which then adsorbes on the printing areas (photosensitive coating).
3. EXPERIMENTAL
Videobased, optical contact angle measurement was performed by
DataPhysics OCA30 device. It ensures the static and the dynamic
characterization of liquid/solid interfaces by contact angle measurement
procedure, the requirement for the calculation of surface free energy.
In this paper contact angle was measured by using the sessile drop
method and surface free energy were calculated by using
Owens-Wendt-Rabel and Kaelble (OWRK) analysis method (1) (Data Physics,
2006).
[[gamma].sub.l] = [[gamma].sup.d]l + [[gamma].sup.P]l (1)
[[gamma].sub.s] = [[gamma].sup.d]s + [[gamma].sup.p]s (2)
where [[gamma].sub.1] and [[gamma].sub.s] are the surface free
energy of liquid and solid respectively, [gamma] [sup.d] is the
dispersive and [gamma] [sup.p] the polar components of the surface free
energy (surface tension). Wetting properties of non-printing and
printing areas of printing plates were calculated by measuring the
contact angle of three liquids of known surface free energy and
viscosity (Tab. 1) (van Oss et al., 1993). Contact angles of liquids
were defined from average values of seven liquid droplets placed on
different areas of the same printing plate sample. Contact angles of
liquids were calculated after 0.2s, 0.4s, 0.6s, 1.0s and 2.0s of droplet
relaxation.
Printing plate samples were prepared to the standardized processing
procedure (ISO 12218:1997). The samples were exposed for 75s and
chemically processed in NaOH solution at the temperature of 24[degrees]C
(pH=12.68; [chi]=8.35 [mScm.sup.-1]).
4. RESULTS AND DISCUSSION
In Fig. 2 results of the relative contact angle measured on the
printing areas are presented. One can see that there is a small
difference in contact angle values of glycerol during the time period.
The values of contact angles measured with water and diiodomethane on
mainly dispersive solid surface do not change in time. This could be the
consequence of their surface free energies while these two liquids are
mainly dispersive (diiodomethane) or polar (water).
Higher difference can be seen on mainly polar surface (nonprinting
areas). Results are shown in Fig. 3. Significant changes of contact
angle values depending on measured time can be seen. On mainly
dispersive solid surface (printing areas) only glycerol has shown
lowering of contact angle values while on polar surfaces all samples
have shown decreasing of values during the time. The highest decrease is
occurred by diiodomethane, it has the smallest surface free energy (Tab.
1). On the other hand, the smallest decrease is measured by glycerol
which is probably the consequence of its higher viscosity (Tab. 1).
Results of the surface free energy calculation can be seen in Fig. 4. It
can be seen that these results are in correlation with results shown in
Figs. 2 and 3. The value of surface free energy of printing areas is not
significantly changed during the time, as only one factor in its
calculation has been changed. On the other hand, on non-printing areas
(polar) the value of surface free energy has changed notably, increasing
its value for nearly 30%.
[FIGURE 2 OMITTED]
[FIGURE 3 OMITTED]
[FIGURE 4 OMITTED]
5. CONCLUSION
In this paper, the wetting characteristics of printing and
non-printing areas of the offset printing plates were defined by
measuring the spreading contact angle of standardized liquids. Results
have shown that contact angle values and values of surface free energie
of non-printing areas (polar characteristics) have been significantly
changed during the time period of measurement (slightly less than 30%).
On the other hand surface free energy of printing areas has not
significantly changed during the time.
One can conclude that dynamic contact angle can give more complex
information about the printing plate surface than static one. On the
other hand, the limitation of this research can be expressed through
usage of only one method for defining of surface wetting properties. The
usage of, for instance, profilometric methods for surface
characterization in correlation with dynamic contact angle could bring
more accurate results. In future, further research has to be directed to
the studies related to polar (non-printing) surfaces on the printing
plates, which are obviously, because of their porous and rough
characteristics, highly sensitive in liquid-solid interfaces.
It is highly important in graphic reproduction process where
functional properties of printing plates, and consequently quality level
of final graphic product, depend on the wetting properties of surface
structures.
6. REFERENCES
Dimogerontakis, Th.; Van Gils, S.; Ottevaere, H.; Thienpont H.
& Terryn, H. Quantitative topography characterisation of surfaces
with asymetric roughness induced by AC-graining on aluminium, Surf.
Coat. Technol. 201, 918-926 (2006)
Hamraoui, A., Thuresson, K.; Nylander, T. & Yaminsky, V. Can a
Dynamic Contact Angle Be Understood in Terms of a Friction Coefficient?
Journal of Colloid and Interface Science 226, 199-204 (2000)
ISO 12218:1997. Graphic technology--Process control--Offset
platemaking
Lander, L. M.; Siewierski, L. M.; Brittain, W. J. & Vogler,
E.A. A Systematic Comparison of Contact Angle Methods. Langmuir, 9,
2237-2239 (1993)
van Oss, C. J.; Giese, R. F.; Li, Z.; Murphy, K.; Norris, J.;
Chaudhury, M. K. & Good, R. J. (1993) Contact Angle, Wettability and
Adhesion, K. L. Mittal (Ed.), VSP, Utrecht, The Netherlands
de Ruijter, M.; Kolsch, P.; Vouea, M.; de Coninck, J. & Rabe
J.P. Effect of temperature on the dynamic contact angle Colloids and
Surfaces A: Physicochemical and Engineering Aspects 144 (1998) 235-243
***Data Physics Instr. GmbH, Operating manual OCA, 2006
Tab. 1. Surface free energy ([[gamma].sub.lv]) and their dispersive
([gamma].sup.d.sub.lv]) and polar ([[gamma].sup.p.sub.lv]) components
and viscosity of liquids
Surface free energy [gamma]
([mNm.sup.-1])
Liquid [[gamma].sub.lv] [gamma].sup.d.sub.lv]
Diiodomethane (Strom) 50.8 50.8
Glycerol (van Oss) 64.0 34.0
Water (Strom) 72.8 21.8
Surface free energy
[gamma]
([mNm.sup.-1])
Viscosity
Liquid [gamma].sup.p.sub.lv] (mPas)
Diiodomethane (Strom) 0.0 2.78
Glycerol (van Oss) 30.0 1412
Water (Strom) 51.0 1.002