Experimental stand for determing fabric compresability during sewing processes.
Ionescu, Irina ; Loghin, Maria Carmen ; Hanganu, Lucian Constantin 等
1. INTRODUCTION
During sewing process the characteristics of the fabrics have a
great influence over the specificity of the machines used and the
process parameters.
The presses foot (1, figure1) and feed dog (2) are inducing a
normal compression on the fabric (3). This compression takes place when
the feed dog teeth are passing the needle plate level (4), generating
the decrease of the textile material (Buhler & Dorfler, 1996).
The fabric compression is made by changing the yarns bending
degree, growth of the filling angle, yarn flattening in joining points
and fabric structure compaction with direct influence on fabrics'
apparent density.
Fabrics compression behavior is important for establishing the
presser foot force as a sewing parameter.
In order to establish and record the dinamic pressure force of the
presser foot and its change according to sewing machine technical and
technological parameters an experimental stand was attached to the
sewing machine (figure 2) (Hanganu et al., 2009).
2. EXPERIMENTAL STAND
The experimental stand will allow (Ionescu & Comandar, 2007):
* The study of the technical and technological parameters (machine
speed, stitch lengh, pressure of the presser foot) upon the sewing
shrinking of the fabrics during sewing with emphasize of the optimum
domain.
* Study of the dinamic pressure force variation depending on the
technic and technological parameters.
* Study of the fabric deformation at feeding process during sewing.
[FIGURE 1 OMITTED]
For studying the evolution of pressure force of the pressure foot
on the fabric, during sewing, a transductor was concived and placed
under the helicoidally compression spring of the sewing machine.
The transductor has an "U" shape, the two horisontal
parts being the elastic elements (figure 2).
The elastic elements of the transductors are two blades of
rectangular shape, embeded at one edge on a spacer considered rigid. At
the other end, the blades have a hole crossed by the compressions spring
of the sewing machine.
After the transducer is placed, it is stressed by two forces F with
equal values and in opposite directions, representing the action of the
helicoidally compression spring, respectively the reaction of the
supporting element.
In order to press the fabric with the presser foot, the sewing
machine Brother DB2-B737-915 MarkII has an helicoidally compression
spring.
The necessary compression force is adjusted by rotating a screw
placed on the sewing head. Once the pressure force is adjusted, the
screw is blocked.
The adjusting parameter on the sewing machine is the distance I
between the sewing head and the screw end (figure 2).
The compression force corresponding to an deflection f is
calculated using the equation:
[P.sub.s] = G x [d.sup.4]/8 x [D.sup.3] x n x f (1) 8-D -n (1)
where: G--transversal elasticity module, G = 8 x [10.sup.4]
N/[mm.sup.2];
d--diameter of the spring wire;
D--spring medium diameter;
n--number of active whirls.
[FIGURE 2 OMITTED]
3. EXPERIMENTAL RESEARCH
The experimental works were developed for a static force of the
presser foot of 6.3daN. An example for the recorded compressibility
diagrams is shown in figure 3 for two different textile materials
(Ionescu, 2002).
Because it was not possible to determine the moment of the contact
between the textile material and presser foot, the thickness gradient
was graphical established.
The tangent at the compression curve was traced and its
intersection with Oy axes was considered as starting point of the
compression point. By tracing a parallel at the Ox axis the initial
point of the effective material compression was established.
The values of the fabric thickness after compression (gf) and
compressibility (c) were established by direct measurement on the
recorded diagrams.
Analyzing the curves can be noticed the resembling with the curve
from the specific literature in the specific case of the presser foot
action upon the textile materials (Comandar & Amariei, 1998). The
shape of the curves is different according with the fabrics'
characteristics.
4. RESULTS
The correlations between compressibility and the fabric
characteristics (table 1) were established using Jardel Scientific,
Table Curves programmer with the possibility of obtaining all the
mathematical models describing the dependence.
One of the 3261 possible equations is chosen the one considered as
better describing the dependence ([r.sup.2]) and with practical utility.
The correlations presented in table 1 have been determined for all
the selected fabric. The analyze was focused on the knitted fabrics
group, due to their great sizable the compression capacity is greater.
The only weave type similar to the knitted fabric group is variant V2
(velvet). Analyzing the dependences presented in table 1 can be noticed
the best correlation for the filling coefficient as correlation factor [[delta].sub.v] ([r.sup.2] = 0.99).
The regression curve c = (g) speaks for itself: for little
thicknesses (under 0.55mm) the air volume included in knit structure is
relatively low and the compression decreases to this value, for the
thicker knit fabrics the compression capacity increases, due to the
thickness growth based on the textile structure "breaking up"
with a greater air volume integrated in fabric structure in detriment of
fibrous content.
For the second regression curve g = f(m) a dependence between knit
compressibility and specific mass is noticed beginning with the value of
175g/[m.sup.2]
On the segment corresponding to the specific mass values between
175-300g/[m.sup.2] a direct proportionality is noticed between its
growth and the compressibility growth. For values of specific mass
greater than 300g/[m.sup.2], fabric compressibility is approximate
constant.
[FIGURE 3 OMITTED]
[TABLE 1 OMITTED]
The third regression curve c = ([??] [[delta].sub.v]) indicates an
increasing of compressibility with the volume indicator growth until a
value of 0.3 and over 0.65. The descendent tendency is placed on the
segment 0,3-0,65.
In the sewing process fabrics compressibility has influence on the
presser foot rising above the needle plate level.
The experimental stand was designed withing one of the most popular
sewing machines, having a high flexibility.
A calibration of the transductors was made using the rising of the
feed dog teeth above the needle plate.
The stand can be used for establish the optimum technic and
technological parameters of the sewing machine for processing different
types of fabrics.
5. REFERENCES
Buhler, G. & Dorfler, H. (1996). Study of the Transport
Behavior of Knitted fabrics on the Sewing Machine, Knitting Technology,
No. 5, ISSN 0946-7718
Hanganu, L. C. et al. (2009). Considerations Concerning the Oil
Viscosity
Influence on Textile Spindles Dynamic Response, Materiale Plastice,
46, No. 1, pp 67-72, ISSN 0025-5289
Ionescu, I. & Comandar C. (2007). Experimental Stand for
Determining the Fabrics Behavior during Sewing Process, Bulletin of the
Politehnic Institute of Iasi, Vol. LIII (LVII), No. 5, ISSN 0253-1119
Ionescu, I., (2002). Research Regarding Improving the Transport of
Textile Fabrics in Sewing Processes, PhD Thesis, Iasi, Romania
Comandar, C. & Amariei, N. (1998). Material Resistance, Cermi
Editor, Iasi, Romania