The development of a custom maxillofacial implant by means of rapid prototyping.
Dumitriu, Dan ; Drstvensek, Igor ; Hren, Natasha Ihan 等
1. INTRODUCTION
Defects in the craniofacial skeleton are of either congenital
(birth defects) or developmental origin (resulting from trauma,
infection, tumour, etc.). The purpose of reconstructing abnormalities is
mainly cosmetic, in the idea to approximate a normal appearance, but
there is also a functional point of view to it. Since they have a strong
effect on the facial region, these types of alterations are highly
visible, they affect the appearance, and thus the psychological state,
social life, and possibility of the patient to found a family, to name a
few.
Today there are modern synthetic implants like chin and mandible
augmentation implants made of modern plastic materials (acrylates)
available, in the shape of contoured two-piece chin implants and angular
mandible augmentation implants. A good synthetic material needs to have
following properties: biocompatibility, inertness, bone-similar weight
or even lighter, capability to generate no artifacts on CT and MRI scans, ease of manufacturing, enough strength to resist functional
stress, not expensive and low or no thermal conductivity (Zeilhofer et
al.).
Three-dimensional imaging associated with rapid prototyping
techniques and availability of alloplastic materials allow for the
construction of an angular implant preoperatively (Bran et al.). This
paper presents a technique of custom maxillofacial implant manufacturing
using a titanium alloy and Selective Laser Melting (SLM), which
represents state of the art in prototyping technologies .
2. PROBLEM STATEMENT
A 22 year old male patient was born with Goldenhar Syndrome, a
variant of craniofacial microsomia (Goodrich et al.), which has affected
the lower left half of his face. His case had been taken care of by an
orthognatic surgeon from the Hospital of Ljubljana. The facial bones
that have been affected by the malformation are the left zygoma, maxilla and mandible. With the exception of the mandible, the bones have been
corrected to a certain extent using bone flaps from a donor site of the
patient's body. The mandible has had an angular mandible
augmentation implant attached to it in the past, which was made of
acrylic plastics material, like the ones presented in the introduction
of this paper. Soon after implant surgery the patient developed a
bacterial infection at the implant site, requiring ulterior implant
removal and treatment. Furthermore, the defect had been enlarged by the
necessity of removing additional bone flaps from the infection site.
A solution was required to manufacture a similar implant out of a
material that wouldn't allow for bacteria to develop and still
successfully provide for a symmetric reconstruction of the person's
appearance, while keeping the implant light enough to be functional.
3. IMPLANT MANUFACTURING
The most promising material was titanium, since it is antibacterial
and strong, while a lot lighter than steel, yet heavier than bone tissue
and very expensive. The problems that had to be solved were keeping a
low weight and finding a method to manufacture the implant.
3.1 Development from medical data
The beginning was analyzing and processing of the data, in form of
CT scans, that had already existed from previous stages of our
patient's treatment. The set of CT images have then been converted
into a three-dimensional digital model, using Materialise Mimics
software, obtaining STL files as output, which can be manipulated and
used in most RP technologies to produce real models.
Following was CAD modelling of the implant, performed with several
3D modelling and STL manipulation software packages. The idea was to
split the skull in two parts in the middle, mirror the right, healthy,
side over the left one and obtain the 3D model of the required implant
through Boolean subtraction operations (Figure 1). However, there was a
problem: due to the facial bone not being symmetric the defined mirror
plane had to be different from the vertical mid-plane. Therefore, it was
determined considering the certain well-defined features of the skull,
like eye and nose cavities.
[FIGURE 1 OMITTED]
After subtracting, the model was inappropriate for implanting due
to medical reasons and further modelling was required using 3D software
(Figure 2).
[FIGURE 2 OMITTED]
3.2 Production of implant model
After the final inspection of the 3D model (Figure 3), there was
need of intermediate real models of the skull and implant, which could
be cheaper to manufacture, in order to be tested for dimensional
accuracy and analysed by the surgeon, for the phase of operation
planning.
[FIGURE 3 OMITTED]
[FIGURE 4 OMITTED]
[FIGURE 5 OMITTED]
In this sense a model had been developed out of polyamide 2200
using selective laser sintering procedure (Figure 4, 5) (Drestvensek,
I.).
3.3 Production of biocompatible implant
The results at the former phase looking promising, the next step
would be to produce the final implant out of titanium alloy. The
selected method will be state of the art SLM procedure (Wholers, T.).
The weight of the implant will measure approx. 6 g, which is quite
acceptable, but the compromise was providing it with thin walls (cca 0,7
mm)The powder material will be processed under normal, non-sterile
conditions in order to shorten the procedure, and the implant will be
sterilized by means of gas sterilization, just prior to the implanting
operation.
4. CONCLUSION
The great potential of RP technologies in medical applications is
shown once more by the presented case study. Custom made craniofacial
implants are expensive and only justify with repairing complex-shaped
defects (Binder, W. J., Kaye A.). Further improvements could be directed
towards finding solutions to make such implants lighter and cheaper to
manufacture.
5. REFERENCES
Binder, W. J., Kaye, A. (1994). Reconstruction of posttraumatic and
congenital facial deformities with three-dimensional computer-assisted
custom designed implants. Plastic and reconstructive surgery, Vol. 94,
775-785
Bran, S., et al. (2002) Reconstruction of bone defects with
alloplastic biomaterials. European Cells and Materials
Drstvensek, I., (2004) Layered Technologies, ISBN 86-4350616-8,
Faculty of Mechanical Engineering, Maribor, Slovenia
Goodrich et al. (1995) Craniofacial Anomalies: growth and
development from a surgical perspective, Thieme, New York
Wholers, T. (2006) Wholers Report, Wholers Associates, ISBN
0-9754429-2-9, Fort Collins, Colorado, USA
Zeilhofer, H.F., et al.(1997) Moglichkeiten und Indikationsbereiche
der Kohlenstoffaserverstarkten Kunststoffe zur herstellung individueller
Implantate fur die Rekonstruktion des Gesichts--und Hirnschadels.
Biomedizinische Technik