Shore displacement chronology of the Estonian Stone Age/Eesti kiviaja rannasiirdekronoloogia.
Jussila, Timo ; Kriiska, Aivar
Introduction
The research of Estonian coastal areas and islands that gained
momentum in the mid-1990s has provided manifold results from
generalizing treatments on settlement and economic history (Kriiska
2000a; 2001; 2002a; 2003) to specifications of absolute chronology and
periodization of the Stone Age (Kriiska 2001; Lang & Kriiska 2001).
Data gathered during survey trips and excavations created the need, on
the one hand, and a possibility, on the other, for an alternative
chronology with regard to shore displacement.
The need arises predominantly from the fact that no archaeological
excavations have taken place so far in most of the discovered sites,
wherefore dates obtained by the radiocarbon method are missing. Although
most of the settlement sites are datable by finds, many places have been
come upon which have not offered clear indicator finds even to enable
ascertainment of the archaeological culture.
The question was raised especially harshly with regard to the
settlement site of Kopu X (Hiiumaa Island) that according to the
altitude should have been younger than the Early Neolithic settlement
site of Kopu I, but the find material gathered during the excavation lacked pottery entirely. Such places that have been inhabited by people
who have known the art of making pottery but who have not left it behind
(for example in short-time campsites) or have not taken their vessels
along to those places at all, are on the background of other coastal
Estonian material (predominantly consisting of quartz only) difficult,
practically even impossible to date and connect to archaeological
cultures that are mostly based on pottery. Nevertheless the determining
and comparing of the altitude relations of sites could at this point
present important information and specifications of dating.
The pioneer role in employing and improving shore displacement
chronology belongs to Finnish archaeologists. They have demonstrated
that by combining data obtained from the shore-related dwelling sites
that have followed the changes in water level caused by land upheaval
and development of water-bodies, it is possible to gain an independent
dating method. The shore-displacement chronologies created in this way
have found productive exploitation in attempts to discover new sites
(e.g. Saukonen 2000; Jussila 2000, 25) as well as to interpret the
existing ones (e.g. Siiriainen 1982; Schulz 1996; Jussila 1999).
As in the case of Estonia we are also dealing with an area of
compensational land upheaval, although it is less extensive than in
Fennoscandia, then in principle the method can be employed here as well.
Another important requirement is also satisfied, namely, most of the
Stone Age hunter-fisher-gatherers dwelling sites were situated directly
on the banks of water-bodies, and starting from the Late Mesolithic also
on the seashore. The fact that people have indeed lived right on the
shore is indicated by both the altitude relations of the cultural layer
and its location on landscape that follows the ancient shore line. The
settlement traces of foraging Stone Age can often be found on coastal
fossilized beach formations and terraces. On seashore the banks of small
bays, often capes extending into coves have been inhabited, while in
default of more favourable conditions the living places could have been
founded also directly on open beach (Figs. 1, 2).
In Estonia sufficient data for creating a shore displacement
chronology exists only for the Baltic Sea, but in principle the method
should be employable also in the case of lakes, especially Lakes
Vortsjarv and Peipsi. The data necessary for generating such a
chronology has been collected systematically during fieldwork in coastal
Estonia. In addition to a detailed analysis of the finds, the locations
of the settlement sites have been thoroughly observed; while many of
those have been mapped more exactly and in several cases also
paleogeographic reconstructions have been composed. Radiocarbon dates
that already form a considerable part of approximately 90 reliable Stone
Age dates that have been obtained in Estonia by the [sup.14]C-method
from both excavated as well as surveyed settlement sites.
The idea to generate a shore displacement chronology with regard to
Stone Age settlement sites located on Estonian ancient beaches occurred
to the authors of the present article already in the beginning of the
1990s. Nevertheless it took almost ten years until the first version was
completed (or to be more exact, until a sufficient amount of material
for creating the chronology was gathered) and still more years until the
results were modelled into an article. Although most of the works
connected with establishing the chronology have been done out of free
time and free will the research of coastal Estonia which has provided
basic knowledge has taken place primarily under the ESF Grant Projects
Nos. 1022, 2254 and 3332. The analysis concerning the needs of the
present shore displacement chronology and modelling it into a scientific
research has been supported by ESF Grants Nos. 4558 and 5238 and the
Foreign Exchange Foundation of the Estonian Academy of Sciences.
The methods and a concise research history of shore displacement
chronology
The best method for creating a shore displacement chronology that
would cover extensive areas is to use a distance-elevation diagram. (1)
The chronology gained by this method is based on land inclination that
results from the differences of land upheaval intensity in different
areas (in Estonian and Southern Finland the upheaval in general
increases from southeast to northwest). In the distance diagram the
ancient shorelines are presented as levels that are projected in the
diagram as straight lines. The distance-elevation from the chosen
baseline is demonstrated on the horizontal scale of the diagram, while
altitude above the present sea level is shown on the vertical scale. For
the baseline usually a straight line that follows the main direction of
the isobases of land upheaval is used (Fig. 3).
In the distance-elevation diagram the ground is observed from the
direction of the land upheaval isobases. The present beach is horizontal
in the diagram and the ancient shores in various ways inclined (Fig. 4).
The older shorelines are always provided with a bigger inclination than
the younger ones. The gradient of the ancient shore is influenced only
by time and the difference in upheaval intensity between the edges of
the diagram. The amount of water in a basin determines the altitude
position of a shoreline in the diagram. In lake basins one character
that determines the amount of water determined by three characteristics,
notably, the outflow, the threshold of the basin and its altitude. The
inclination axis of the ancient shorelines of the basins stands at the
threshold of the outflow. During the marine phases of the Baltic Sea the
altitude of the shore levels was determined by changes in the ocean
level and as there was no outflow or threshold there was no fixed
inclination axis either.
The using and interpretation of the distance-elevation diagram is
influenced by the direction of the baseline. In the present article a
straight line drawn at an angle of 56 [degrees] from the north was used
(Fig. 3). The baseline originates from the azimuth of the maximal land
upheaval of 326 [degrees] and it has generally been used to observe the
shore processes of the Litorina Sea (for example Kessel & Raukas
1979; Veski 1998) and located between the neotectonic isobases 0 and +1
mm/year (see for example Miidel 1995, Fig. 1). (2) The change in the
direction of the baseline from which the information of the beaches is
measured affects the inclination of the shore levels in the
distance-elevation diagram. Therefore the inclinations of the beaches in
the diagrams compiled on the basis of differently oriented baselines are
no longer directly proportional.
The baseline of the distance-elevation diagram is adequate only in
a limited territory where the isobases of land upheaval are generally
oriented similarly. In Southern Finland it has been verified that the
directions of the land uplift isobases could conceivably be irregular,
but the isobases of the highest shore of ancient Lakes Saimaa and
Paijanne, which are based on a huge amount of sound material, are
straight and regular (Hellaakoski 1922, 105; Saarnisto 1970, 18; 1971).
Therefore it is risky to use land upheaval isobases as such in distance
measurements when constructing shorelines.
In case the land in the studied area has risen as one shield, the
image of the ancient beach in the diagram is a straight line and the
shore level has one inclination value. A hinge line of land upheaval has
been noticed in the southsouthwestern side of the Salpausselka end
moraine in South-eastern Finland. The shoreline gradients of the lake
district in the north-northwestern side of Salpausselka are considerably
steeper and do not correspond to those gradients determined in the
south-southeastern side (Donner 1966; 1970; Miettinen 2002; Siiriainen
& Saarnisto 1970). If the distance-elevation diagram cuts a hinge
line, then the synchronous ancient shoreline appears in the diagram as
an angled line with two different inclination values.
While creating a shore displacement chronology the data gathered
from simultaneous beaches of the studied area are added to the diagram.
If there are plenty of simultaneously regarded phenomena, regression
analysis and the residual plot method can be used to look for mean water
levels (Jussila 1994; 1999). At simplest, two completely simultaneous
beach observations in the different ends of the diagram are marked by a
line projected between them. Exact determination of the beach altitude
connected to a certain (exact) time is difficult and often there are no
data available of absolutely simultaneous shore processes, or the data
are interpretative (for example the [sup.14]C dates). Thus in practice
several different methods have to be used to gain synchronized shore
levels and date them. It is especially useful to place and date a
specific short-term shore forming event as the base level (e.g. the
uniform fossilized beach formed due to a sudden outflow of the Vuoksi
River on the territory of Lake Saimaa in Finland). The aforedescribed
way of looking for ancient shorelines still holds only for the
territories of even land upheaval and only if the diagram does not cut
the hinge line.
This is how simultaneous shore levels are searched for and dated
while establishing a shore displacement chronology. The final results
depend on the amount of dated shore information and the accuracy of
their dates and altitude determinations. The dating of the shore
displacement chronology is inaccurate in case changes in the water level
have been limited for some reasons. A final and sufficiently exact
dating method for archaeologists is thus hardly ever attainable via
studying shore displacement. A shore displacement chronology must be
constantly completed and made more exact with new data. Archaeologists
themselves can contribute to the process by documenting Stone Age
settlement sites as accurately as possible and fixing thoroughly the
information on fossilized beaches (including altitude data) on the site
as well as in its neighbourhood.
Geologists have used the distance-elevation diagram to describe
ancient shores and their inclination already in the early 20th century
(see, e.g., Hellaakoski 1922). In the 1920s the development of a
relative chronology of Finnish prehistoric pottery was started on the
basis of the shore displacement of the Baltic Sea (Europaeus 1926).
During the same decade the dates of the Stone Age settlement sites were
studied also with the help of a distance-elevation diagram (Ramsay 1927). In the 1960s a shore displacement chronology of the Baltic Sea
beaches was compiled on the basis of archaeological data and [sup.14]C
dates by Ari Siiriainen (1969). In the 1990s Timo Jussila created a
shore displacement chronology for the Lake Saimaa basin on the basis of
partly geological, partly archaeological data (1994), and dated the rock
paintings of Saimaa as well (1999).
In Estonia shore displacement chronology has not been employed for
dating archaeological sites so far. Only calculations based on
neotectonics have been used to date single sites. By this method
attempts have been made to date the settlement sites of the Early
Neolithic Vihasoo III (Kriiska 1997a, 25; 1997b, 14), the Middle
Neolithic Lemmetsa II, the Middle and Late Neolithic Lemmetsa I (Kriiska
& Saluaar 2000, 17, 34) and the settlement of Kihnu Moisakula
(Kriiska 2002b, 15) supposedly dating from the end of the Bronze Age or
the beginning of the Iron Age.
Positioning and dating of the shore surfaces on the basis of
Estonian archaeological material
Foundation
While compiling the Estonian shore displacement chronology, 60
Stone Age settlement sites in coastal Estonia and the West Estonian
islands have been taken into account (Fig. 3, Table 2). These were
placed on a distance-elevation diagram measuring their distances from a
baseline projected on the Estonian map with a scale of 1:350 000. (3)
The baseline was drawn at an angle of 56 degrees on a straight track of
Rannametsa-Olustvere (LAT = 58 [degrees] 33' 16.4" and LON =
25 [degrees] 33' 47.4") --Avinurme (LAT = 58 [degrees]
59' 13" and LOT = 26 [degrees] 52' 29.7")--Narva
(Fig. 3).
In addition to archaeological data also relief forms have been
taken into consideration, which have been analyzed especially thoroughly
concerning the settlement sites used as the basis of the dated
shorelines. For all sites the altitude of the lower border of the
cultural layer has been determined. Also, the assumed sea level of the
habitation time (mostly relying on the landscape topography (relief))
has been ascertained. 33 radiocarbon dates (Table 1) have been used to
project and date the shorelines.
In order to compile the distance-elevation diagram the settlement
sites were divided into five main chronological groups: Middle
Mesolithic, Late Mesolithic, Early Neolithic, Middle Neolithic and Late
Neolithic (Fig. 4 and Table 2). (4) Some settlement sites yielded
habitation traces of several periods of the Stone Age. On the Kopu
peninsula (Hiiumaa Island) there are altogether three settlement sites
in case of which nothing else could be supposed than that they could be
remains of Neolithic dwelling places, and even this hypothesis was based
on the comparison of altitude relations of three dated settlement sites
of the Kopu peninsula. In some cases, although the archaeological
material was too scarce (Rouste) or insufficient for a firm distinction
(for example Kopu IX and XII) (5- the age prognosis was still
formulated, though consciously taking the risk of error. As one of the
tasks of shore displacement chronology is just to contribute to
interpreting such problematic sites the authors were interested in
seeing if an archaeological-typological solution and thus the given
dating overlaps with or differs from that obtained by the shore
displacement chronology.
Shore 1 (6)
Two Mesolithic shore surfaces can be distinguished by the existing
radiocarbon dates: (1) Vohma I and Kopu IV/V with the age of 5700 years
cal BC and (2) Ruhnu II and Kopu VII/VIII with the age of 5100 years cal
BC.
The average radiocarbon dates (probability 95.4%) obtained from the
settlement sites of Vohma I and Kopu IV/V are, respectively, 5825[+ or
-]185, 5645[+ or - ]85, 5260[+ or -]220, 5175[+ or -]475, 5670[+ or -]45
cal BC and 5555[+ or -]65 cal BC (for base dates see Table 1). The age
of the shoreline 1 - 5700 cal BC--has been arrived at considering all
dates of the Kopu IV/V settlement site and the two oldest dates of the
Vohma I site. The distances of the sites from the baseline are,
respectively, -141.8 km and -105.5 km and their distance from each other
is suitable to enable one to draw the shoreline with a sufficient
accuracy. Considering the relief of the landscape, the seashore of the
habitation time at Kopu IV/V was presumably 27.5 m, while at the time of
Vohma I it was 20.5 m above the present sea level. The projected line
between them yields the gradient value of 0.193 m/km as the inclination
of shoreline 1.
The settlement site of Vohma I has yielded two radiocarbon dates
that are a few hundred years younger, yet remain between the
afore-described shore surface and the Late Mesolithic one that will be
treated next. As the latter is approximately two meters higher than the
oldest shore (1) described in our research, then in order to fit the
reasoning the youngest habitation traces of the settlement site of Vohma
I should be found higher than the older ones. The kind of difference in
stratigraphy can be seen in the results of the excavation of 1997, where
the youngest dates were obtained from hearths located on the higher part
of the ancient shore ridge and the older ones, respectively, lower
(Kriiska 1998).
Shore 3
According to radiocarbon dates the following time horizon is
represented by three settlement sites: Ruhnu II, Kopu VII/VIII and
Pahapilli I (Figs. 3, 4) the average dates of which acquired by the
radiocarbon method (with a 95.4% probability) are, respectively, 5275[+
or -]425, 5070[+ or -]220; 5120[+ or - ]170 and 5250[+ or -]400 cal BC
(for base dates, see Table 1). Considering their altitudes of the
habitation time (positioned in the same way as with the settlement sites
of the previous shore surface) there are three possibilities to draw the
shorelines: (1) Ruhnu II and Pahapilli I, (2) Kopu VII/VIII and
Pahapilli I and (3) Ruhnu II and Kopu VII/VIII. It is not possible to
project the shore surface between Ruhnu II and Pahapilli I, since its
inclination would be smaller than the following (Early Neolithic) shore
(6) and this is unfeasible. The change of the inclination compared to
the older shore (1) is too abrupt as well. Also, the settlement site of
Kopu VII/VIII would be a little too high from the sea level of the time.
According to the shoreline projected between Kopu VII/VIII and Pahapilli
I the settlement sites of Ruhnu would have been over 4 meters above the
sea level back then and we would not be dealing with shore related
dwelling sites.
[FIGURE 3 OMITTED]
A third possibility still remains--to project the shoreline between
the settlement sites of Ruhnu II and Kopu VII/VIII. This would not
generate any conflict of principle, but assumes the flooding of at least
part of the settlement site of Pahapilli I by a short-term
transgression. The latter is not excluded by the existing data.
Including the date of the settlement site of Kopu VII/VIII and the
younger Mesolithic date of the Ruhnu II settlement, the shoreline was
dated to 5100 cal BC. The line projected between them gives 0.1255 m/km
as the inclination gradient of the shoreline.
A radiocarbon date that is a few hundred years older originates
from the settlement site of Ruhnu II. Since two other dates taken into
account in projecting the shoreline are the same, they could be regarded
as representatives of a simultaneous water level. In case we take the
older date into consideration, then the other positioned Late Mesolithic
shoreline (1) is a little older than the age that we have used.
Shore 6
Five settlement sites with dates obtained by the radiocarbon method
can be exploited to distinguish the Early Neolithic shoreline. The
average dates of the sites Riigikula IV, Riigikula IX, Riigikula XII,
Kopu I and Ruhnu II (with a 95,4% probability) are, respectively, 4950[+
or -]300, 4500[+ or -]300; 4275[+ or -]275; 4105[+ or -]145; 4535[+ or
-]175, 4440[+ or -]100, 4425[+ or -]95, 4270[+ or - ]230, 4270[+ or
-]230, 4190[+ or -]150, 4160[+ or -]180; 4215[+ or -]235 and 4175[+ or
-]375 cal BC (for base dates, see Table 1).
Considering their altitude (defined the same way as the settlement
sites of the oldest shoreline) there are two possibilities to draw the
shorelines: (1) the settlement sites of Riigikula and the site of Ruhnu
II, and (2) the settlement sites of Riigikula and the site of Kopu I.
The settlements of Riigikula cannot be used for the task independently
because of their limited distance from each other. The settlement site
of Ruhnu I, situated higher than even the oldest shoreline (1) treated
here, differs very clearly from the others and cannot in any case be on
the same shore with the settlements of Kopu I and Riigikula. The
settlement traces of Narva Culture at Ruhnu II which has been inhabited
since the Mesolithic are presumably not to be found on the Early
Mesolithic beach, but inland. Considering the landscape relief in the
area it can be assumed that by that time the original lagoon at the
Litorina Sea had changed into a remnant lake and the bank of the lake
situated a few meters higher was used as a campsite (for a location map
of the Ruhnu Stone Age sites see Kriiska & Saluaar 2000, Fig. 1).
Thus, the only possibility is to project the shoreline between the
simultaneous settlement sites in Riigikula and Kopu. The shore of the
time of the oldest dates (approximately 4500 cal BC) of the Kopu I
settlement has been, considering the landscape relief (a foot of a clear
coastal terrace), about 24.5 meters higher than the present sea level
(Table 2). The altitude of 8.5 m above the present sea level corresponds
to this period at the settlement site of Riigikula IV (Table 2). Thus
the shore is distinguished as dated to 4500 cal BC with the gradient of
0.115 m/km, which inclination is completely in accord with the earlier
shorelines.
The oldest date of Riigikula IV (Table 1) is problematic as a
medium but within the limits of a considerable dating error it can still
be fitted into our shore- displacement chronology. (7) The considerably
younger date of the Riigikula IX settlement site (Table 1) can represent
the water level situated half a meter lower and accords with the
distinguished shoreline as well. The acquired result suggests that the
settlement site of Riigikula XII that yields the youngest date might not
have been situated directly on the seashore anymore. It is possible that
during that period the river of Torvajogi formed on the border of the
lagoon, which had become a swamp by the time, and the dwelling place was
situated on its bank (for a location map see Kriiska 2000a, Fig. 2). As
the changes in the water level caused by land upheaval are slow starting
from the discussed era in the areas that are situated near our baseline,
thus the shore displacement dates are made even less accurate.
Shore 7
The projecting of the shoreline of the Middle Neolithic is hindered
by the fact that no reliable radiocarbon dates have been obtained from
the Typical Combed Ware Culture settlement sites in Estonia. Thus, some
other solution is needed to position and date the shoreline. In order to
do that the finds of the settlements were analyzed
archaeologically-typologically, while the task was helped by the present
situation with the typical combed ware that on the scale of the Stone
Age has been used for a rather short term (Lang & Kriiska 2001,
90-92). The typical combed ware that is clearly and unambiguously
distinguished from the rest of the ceramics has been gathered from the
coastal Estonian settlement sites of Kopu IB, Lemmetsa II, Malda,
Sindi-Lodja III, Joekalda and Naakamae (Jaanits et al. 1982, 85; Kriiska
& Saluaar 2000, 15; Kriiska et al. 2002, 31).
After placing these settlement sites into the distance diagram it
is obvious that the sites do not station themselves on the same shore
level and they also seem to be set apart in time (Fig. 4). Of that list,
Lemmetsa II and Naakamae are the two lowermost. Typical combed ware has
not been detected from any sites situated lower than those. The two
sites are linked together by the extent of their settlement period--both
have been inhabited after the Typical Combed Ware Culture and during the
Late Combed Ware Culture period, while at the same time they lack
habitation traces from the era before the Typical Combed Ware Culture
(Kriiska & Saluaar 2000, 15; Jaanits et al. 1982, 85). Thus they
have served as dwelling sites at the time when typical combed ware was
replaced by late combed ware. Considering the dates of the beginning of
the Late Combed Ware Culture in Estonia, Finland and Latvia (Lang &
Kriiska 2001, 92) the transition period can be dated approximately to
3600 cal BC, and the same date can be applied to the shoreline drawn
between the settlements. The position of the shoreline gained in this
way and its inclination in the distance diagram are in accord with the
other shorelines. The gradient of the shoreline (7) is 0.083 m/km.
If the line of the shore is drawn through the settlements of Malda
and Kopu IB, it is situated near the shoreline (6) dated to 4500 cal BC
both by position and by inclination. This suggests that the mentioned
settlement sites represent the early stage of the Typical Combed Ware
Culture, which according to the diagram could have started already a
little earlier than 4000 BC. This does not contradict the dates of the
typical combed ware either (Kriiska 2001).
Shore 8
Younger foraging settlement sites in coastal Estonia belong to the
Late Neolithic and are connected to the Late Combed Ware Culture.
Distinct late combed ware that could be dated to the Late Neolithic has
been found from the settlements of Loona, Naakamae, Kasekula, Lemmetsa I
and Kudrukula (Kriiska 1995, 93). In other cases the pottery might also
be older than 3200/3000 years cal BC, which has become the border
separating the Middle and the Late Neolithic in Estonia (Lang &
Kriiska 2001, 93). From the settlement sites of Loona, Naakamae and
Kudrukula radiocarbon dates have also been obtained, respectively,
2850[+ or - ]250, 2625[+ or -]165; 2680[+ or -]210; 3645[+ or -]135,
3650[+ or -]300, 3515[+ or - ]145, 3450[+ or -]350 and 2740 [+ or -]170
cal BC on the average (95.4% probability) (for base dates, see Table 1).
Similarly to the previous shoreline two settlement sites, Loona and
Kudrukula, the lowermost on the diagram, are distinguished here. Their
radiocarbon dates differ, though. In the case of Loona the shore of the
habitation time can be determined, considering the landscape relief. As
the relief is gentle it could not have been a very long-term coastal
settlement, but the paleogeography of Kudrukula is in the most part
unclear (Kriiska 1995, 58-59). Moreover, a small river (Kudrukula brook)
might have formed there already during the Stone Age, which could have
enabled continuation of settlement after the retreat of the sea as well.
Thus, considering the date of Loona, the height of the water level
at 2700 cal BC can be assumed as 11 m from the present sea level (Table
2). The inclination of the shore is problematic. In any case the
shoreline of that period must obviously have been lower than the
settlement site of Kudrukula. At the same time it cannot have been much
lower than the latter, as the inclination of the shore formed in this
way would be too steep and thus not in accord with the older shores. As
long as more exact research has not been carried out the assumption must
be accepted. As the change in the inclination between the previous shore
surfaces has been approximately 0.000035 m/km a year, it can be
considered that at 2700 cal BC the gradient of the shoreline should have
been 0.0523 m/km. If we try to project the line via the altitude of
Loona, the shore level at that time was situated 1 m lower than the
supposed lower border of the settlement site of Kudrukula.
Checking of the results with the assistance of a time gradient
curve and specifications
A time gradient curve must be regular and even. In the curve
enabled by our results there is a noticeable exception at 5100 cal BC
(Fig. 5A). As this is impossible we were forced to redefine our basis
for projecting the shoreline. As the curve is regular and even above the
Neolithic shores and as, on the basis of archaeological evidence, it is
absolutely impossible to reduce the inclination of the shorelines enough
to correct the younger Late Neolithic shore part in the curve, the error
must be in the shoreline dated to 5100 cal BC.
Also the oldest shoreline (1) could be subjected to fine adjustment
either by making the dating older or the gradient more shelving. The
date cannot be changed if the inclination can be made gentler. It is not
possible to alter the water level at the settlement site of Vohma I,
whereas in the case of the Kopu VI/V settlement it does not make an
essential difference if we lower the water level by 0.5 meters and set
the shore level of the habitation time at the altitude of 27 meters (for
a location map of the Late Mesolithic Kopu IV/V site, see Kriiska 1996,
Fig. 2). The rectified shoreline gradient acquired this way is 0.179
m/km.
As mentioned above, the shoreline (3) of 5100 cal BC is impossible
and needs a radical change in its dates and/or gradient. Knowing that
during the discussed era the transgression of the Litorina Sea caused by
the rise in the ocean level has been metachronous in the Baltic Sea
valley (Kessel & Punning 1995, 227; Raukas 1997, 273), then the
method used so far, especially considering the lack of data, is
difficult to employ. Thus the time gradient curve was made primary and
using the oldest rectified shore surface as well as the Neolithic ones a
graphically homogeneous and even time gradient curve was manually drawn
(Fig. 5B).
Considering the dated settlement sites for which it is not possible
to clearly demonstrate their inundation by transgression, a series of
Mesolithic shorelines were projected with the help of the time gradient
curve. Due to the inaccuracy of dates and the scantiness of data it
would still not provide a sufficiently good outcome, as far as the
Mesolithic settlement sites of Ruhnu are apparently different from the
others. If we included these, the assumed water level in Kopu would rise
above 30 meters and this would contradict both archaeological and
geological data gathered from the peninsula so far (Lougas et al. 1996).
Moreover, all settlement sites of Saaremaa Island would remain under a
transgression of several meters.
Thus it remains to be confirmed that the material from Ruhnu cannot
be exploited in our shore displacement chronology, the reason being
either a difference in the settlement mode or land upheaval. Both
alternatives need to be checked before the data can be used.
[FIGURE 5 OMITTED]
Considering all of the data the result of the present research is
to be regarded as a prognosis, made in order to gain a basis for studies
to follow and a tool for pursuing fieldwork. To do that, four lines
dated 5500, 5200, 5000 and 4700 cal BC were set into the diagram on the
basis of the time gradient curve. They were fitted in the diagram
manually, trying to keep the curve of their shore upheaval even, which
is in accord with the existing geological matter, and to avoid
contradiction with archaeological data, notably the material of Kopu,
Vohma and Pahapilli.
The result refers to a slow metachronous transgression of the
Litorina Sea and the genesis of the highest Litorina Sea coastal beach
formation dating from 5500 cal BC (Kopu) to 4700-4500 cal BC (lower
reaches of the Parnu and Narva rivers) in Estonia. In the areas located
between -120 meters and -70 meters in the distance diagram the
transgression was slow and the changes in the water level were limited
during a long period. Thus the dating of the settlement sites of the end
of the Mesolithic and the Early Neolithic is difficult.
Interpretation and comparison
The changing of seashores is a process characteristic of the whole
Baltic Sea area. In regions with quick compensational land upheaval the
process is discernible even within a few generations. Although land
upheaval in Estonia is modest comparing to Fennoscandia it has
determined and affected our coastal areas over time. This enables us to
use the dates of the Stone Age dwelling sites situated directly on the
seashore with the help of shore displacement chronology.
The present research includes most of the known Stone Age
settlement sites on the Estonian mainland coast and the Western Estonian
archipelago. The majority of them have been found or inspected during a
series of fieldwork by Aivar Kriiska. Only the sites that have not
revealed sufficient information on their location (mostly Northwestern
and North Estonian sites; see Lang 1996, 411, 412, 420) are left out of
the analysis.
Out of the sixty observed settlement sites, 51 can be dated by
shore displacement. According to sufficiently reliable radiocarbon dates
the oldest of them--the sites of Sindi-Lodja I and II--originate from
the beginning of the Litorina Sea period (Kriiska et al. 2002), when the
water level was several meters lower than the maximum of the Litorina
Sea transgression. Scarcity of data from the viewed period makes it
impossible to date the sites that have later been inundated by the sea
and buried under sand layers several meters thick, more exactly than
before 5700 years cal BC.
At this moment the settlement sites on the Isle of Ruhnu have to be
ignored completely. As was mentioned above, the reason for this can be
either a difference in the settlement mode or land upheaval. Either we
are dealing here with dwelling sites situated on a small coastal lake
higher than the sea or a fold of land upheaval directly between Ruhnu
and the rest of Estonia.
Of the settlements on the Isle of Hiiumaa, the site of Kopu XVII
has never been on the seashore. This dwelling site, located 34 meters
above the present sea level, has apparently been founded on the shore of
a remnant lake situated above the present Koivasoo Bog and thus the site
cannot be dated with a shore displacement chronology following the shore
changes of the Baltic Sea (for a location map of the Late Mesolithic
Kopu XVII site, see Kriiska 2003, Fig. 4:3).
In general the dates obtained by us are in accord with the
radiocarbon ones as well as those based on artefact typology (Table 2).
The settlement sites (on the Isle of Saaremaa and in Western Estonia)
situated 100-110 km away from the baseline and on the altitude of 21-22
meters are problematic, since the water level there has long remained in
the direct vicinity of the settlements and therefore the coastal sites
might have continued in the same places for even longer than a thousand
years. In this case it is impossible to distinguish the Late Mesolithic
and the Early Neolithic settlement sites without radiocarbon dates or
indicator finds in the archaeological material.
The same situation holds for the areas that have been under a
Litorina Sea transgression and suitable for seashore settlements during
both the transgressive as well as the regressive phase. E.g. Konnu in
southern Saaremaa, which could have been inhabited in the Late
Mesolithic as well as the Early Neolithic, is one of such sites. There
the settlement phase of the Early Neolithic has been well represented by
pottery of the Narva type. Whether the place was settled also in the
Mesolithic as suggested earlier (Jaanits 1995), is impossible to
determine by the archaeological material at the present stage of
research. Our chronology has given new supportive data to the Typical
Combed Ware Culture, which so far has lacked a radiocarbon dating from a
reliable context. The dates obtained on the basis of shore displacement,
considering only the more probable ones (Table 2), remain between
4120-3600 BC, which corresponds perfectly to the age specifications of
the Typical Combed Ware Culture gained from the neighbouring countries
(see Kriiska 2001; Lang & Kriiska 2001).
Our shore displacement chronology does not considerably contradict
the geologists' conclusions on shore displacement in Estonia.
Comparing the altitude of the maximal shore line of the Litorina Sea
(Table 3) the results are similar, especially on the Kopu peninsula
where the fossilized beaches have been the most thoroughly fixed so far.
The shore displacement chronology created on the basis of Estonian
Stone Age material could also be applied to the Karelian Isthmus up to
the hinge line discernible in the northwestern part of the area (Donner
1966; Miettinen 2002). Considering the measuring error the altitude
prognoses of the maximum of the Litorina Sea transgression gained by our
chronology correspond considerably well with the relevant geological
observations. These are slightly higher than the research results of
Arto Miettinen in the southern and western part of the Karelian Isthmus
(2002), but are quite similar to the outcome reached by Esa Hyyppa
(1937). The greatest difference appears at Babinskoye, where the
altitude calculation and dating of Miettinen is distinctly different
from ours, though the place under discussion is the closest to our
research area, being situated only 30 km off Narva.
According to Miettinen (2002) the Litorina Sea transgression
reached its peak on the Karelian Isthmus and in Ingria in 7200-6800 cal
BP (Table 4). According to our chronology, there the transgression has
been more metachronous, as it gained its highest level at first in the
northwestern part of the area (7500 cal BP) and later in the
southeastern part (6500 cal BP). Comparing the dates one should take
into account that while calibrating the dates Miettinen used an older
calibration curve (cal20) that can in places give a remarkably younger
result than the more recent calibration curve applied by us (cal40).
Miettinen's altitude data for the Russian part of the region have
been estimated on the basis of considerably older maps. Thus his and our
knowledge cannot be compared quite so directly.
Unfortunately there are no Stone Age seashore settlement sites
dated by the radiocarbon method on the Karelian Isthmus and therefore a
comparison with the archaeological locations is, as yet, difficult to
accomplish. As for archaeological finds the dated material of the four
tested settlement sites do not contradict our chronology. (8)
The shore displacement chronology of the Estonian Stone Age is
hereby presented only as a first version and it suffers from shortage of
material: there are not enough sites, especially those studied more
thoroughly and dated by the radiocarbon method, while occasionally
paleogeographic information on the settlement sites is insufficient as
well. Nevertheless, the general layout is complete now and the
archaeologists who study Estonian coastal areas have an example to
follow and their new data can be integrated in the shore displacement
chronology in the future.
The results of our chronology can be used to detect new sites
(after having made a prognosis for potential dwelling places) as well as
to interpret the existing ones. It does not only produce information on
the settlements situated directly on the seashore but it enables one to
explain how far the sea was at the time of the existence of the observed
dwelling or burial sites. Our chronology has been successfully used to
calculate, for example, the distances of the Estonian Corded Ware
Culture settlement sites from the sea (Kriiska & Tvauri 2002, 79).
Acknowledgements
The authors wish to thank the geologists Professor Volli Kalm and
Valdeko Palginomm, the archaeologists Professor Mika Lavento and
Kristiina Johanson for their generous help and Kristel Kulljastinen for
the drawings.
References
Donner J. J. 1966. A comparison between the Late-glacial and
Post-glacial shore- lines in Estonia and South-western
Finland.--Commentationes Physico-Mathematicae, 31/11. Societas
scientiarum Fennica, 1-14.
Donner J. J. 1970. A profile across Fennoscandia of Late
Weichselian and Flandrian shore-lines, 1969.--Commentationes
Physico-Mathematicae, 36/1. Societas scientiarum Fennica, 1-23.
Europaeus, A. 1926. Stenalderskeramik fran kustboplatser i Finland. -
Nordiska arkologimotet i Helsingfors 1925. (SMYA, XXXVI, 1.)
Hellaakoski, A. 1922. Suursaimaa.--Fennia 43/4, 1-122.
Hyyppa, E. 1937. Post-glacial Changes of Shore-Line in South
Finland. (Bulletin de la Comission Geologique de Finlande, 120.)
Helsinki.
Jaanits, K. 1995. Two Late Mesolithic/Early Neolithic coastal sites
of seal hunters in Estonia.--Man and Sea in the Mesolithic. Oxford,
247-249.
Jaanits, L., Laul, S., Lougas, V. & Tonisson, E. 1982. Eesti
esiajalugu. Tallinn.
Jussila, T. 1994. The shoreline displacement dating of prehistoric
dwelling sites in Iso-Saimaa. Arkeologian laudatur-tutkielma toukokuu
1994, Helsingin Yliopisto Arkeologian laitos (unpublished manuscript,
abstract in Jussila 1995).
Jussila, T. 1995. Shore-level displacement of the prehistoric
dwelling sites in the ancient Lake Saimaa complex.--Fennoscandia
archaeologica, XII, 1.
Jussila, T. 1999. Saimaan kalliomaalausten ajoitus
rannansiirtymiskronologian perusteella.--Saimaan ja Paijanteen alueen
kalliomaalausten sijainti ja syntyaika. (Kalliomaalausraportteja, 1),
114-133.
Jussila, T. 2000. Pioneerit Keski-Suomessa ja Savossa.
Rannansiirtymisajoitusmenetelmien perusteita ja
vertailua.--Muinaistutkija, 2, 13-38.
Kents, P. 1939. Postglatsiaalsed Laanemere randjoone vonkumised
Eestis illustreeritud Kopu poolsaarel. Manuscript in the Institute of
Geology, University of Tartu.
Kessel, H. & Punning, J.-M. 1995. Laanemeri jaaajajargsel
ajal.--Eesti. Loodus. Tallinn, 224-227.
Kessel, H. & Raukas, A. 1979. The Quaternary history of the
Baltic. Estonia.-- The Quaternary history of the Baltic. (Acta. Univ.
Ups. Symp. Univ. Ups. Annum. Quingentesium Celebratis, 1.) Uppsala,
127-146.
Kriiska, A. 1995. Narva joe alamjooksu ala neoliitiline
keraamika.--Eesti arheoloogia historiograafilisi, teoreetilisi ja
kultuuriajaloolisi aspekte. (Muinasaja teadus, 3.) Tallinn, 54-115.
Kriiska, A. 1996. Archaeological studies on the Kopu
Peninsula.--TATU, 45, 4, 398-409.
Kriiska, A. 1997a. Excavations of the Stone Age site at Vihasoo
III.--Arheoloogilised valitood Eestis 1996. (Stilus, 7), 19-28.
Kriiska, A. 1997b. Kroodi ja Vihasoo III asula Eesti
varaneoliitiliste kultuuriruhmade kontekstis.--EAA, 1, 7-25.
Kriiska, A. 1998. Aruanne arheoloogilistest valjakaevamistest Vohma
I kiviaja asulakohal (Mustjala khk.) 19. juuni-9. juuli 1997. aastal.
Manuscript in the archives of the Institute of History, Tallinn.
Kriiska, A. 2000a. Corded Ware Culture sites in North-Eastern
Estonia.--De temporibus antiquissimis ad honorem Lembit Jaanits.
(Muinasaja teadus, 8.) Tallinn, 59-79.
Kriiska, A. 2000b. Settlements of coastal Estonia and maritime
hunter-gatherer economy.--Lietuvos archeologija, 19. Vilnius, 153-166.
Kriiska, A. 2001. Stone Age Settlement and Economic Processes in
the Estonian Coastal Area and Islands. Academic dissertation. Helsinki.
http://ethesis.helsinki.fi/julkaisut/hum/kultt/vk/kriiska. Kriiska, A.
2002a. Laane-Eesti saarte asustamine ja pusielanikkonna kujunemine.-
-Keskus--tagamaa --aareala. Uurimusi asustushierarhia ja voimukeskuste
kujunemisest Eestis. (Muinasaja teadus, 11.) Tallinn, 29-60.
Kriiska, A. 2002b. Noppeid Eesti vaikesaarte esi- ja
varaajaloost.--Artiklite kogumik, 3. (Parnumaa ajalugu. Vihik 5.) Parnu,
8-20.
Kriiska, A. 2003. Colonisation of the west Estonian
archipelago.--Mesolithic on the Move. Papers presented at the Sixth
International Conference on the Mesolithic in Europe, Stockholm 2000.
Oxbow Books, 20-28.
Kriiska, A. & Saluaar, U. 2000. Lemmetsa ja Malda neoliitilised
asulakohad Audru joe alamjooksul. --Artiklite kogumik, 2. (Parnumaa
ajalugu. Vihik 3.) Parnu, 8-38.
Kriiska, A., Saluaar, U., Lougas, L., Johanson, K. & Hanni, H.
2002. Archaeological excavations in Sindi-Lodja.--AVE, 2001, 27-40.
Kriiska, A. & Tvauri, A. 2002. Eesti muinasaeg. Tallinn.
Lang, V. 1996. Muistne Ravala. Muistised, kronoloogia ja
maaviljelusliku asustuse kujunemine Loode-Eestis, eriti Pirita joe
alamjooksu piirkonnas. (Muinasaja teadus, 4.) Tallinn, 1996.
Lang, V. & Kriiska, A. 2001. Eesti esiajaloo periodiseering ja
kronoloogia.-- EAA, 5: 2, 83-109.
Lepland, A., Hang, T., Kihno, K., Sakson, M., Per Sandgren &
Lepland, A. 1996. Holocene sea-level changes and environmental history
in the Narva area, North-Eastern Estonia.--Coastal Estonia. Recent
Advances in Environmental and Cultural History. (PACT, 51.) Rixensart,
313-358.
Lougas, L., Kriiska, A. & Moora, H. 1996. Coastal adaptation
and marine exploitation of the Island Hiiumaa, Estonia, during the Stone
Age with special emphasis on the Kopu I Site.--Landscape and Life.
Studies in honour of Urve Miller. (PACT, 50.) Rixensart, 197-211.
Miettinen, A. 2002. Relative Sea-Level Changes in the Eastern Part
of the Gulf of Finland during the Last 8000 Years. (Ann. Acad. Sci. Fenn
Geologica-Geographica.)
Moora, H. & Lougas, L. 1995. Natural conditions at the time of
primary habitation of Hiiumaa Island.--TATU, 44: 4, 472-481.
Moora, T. & Raukas, A. 2003. Jarve kujunemine ja
areng.--Vortsjarv. Loodus, aeg, inimene. Tallinn, 83-95.
Ramsay, W. 1920. Litorinagransen i sydliga Finland.--Geologiska
foreningens i Stockholm Forhanlingar, 42, 243-263.
Ramsay, W. 1927. Niva forandringar och stenaldersbosattning i det
baltiska amradet.--Fennia 47, 1-68.
Raukas, A. 1997. Evolution of the Baltic Sea.--Geology and mineral
resources of Estonia. Tallinn, 268-274.
Raukas, A., Moora, T. & Karukapp, R. 1995. Laanemere arengust
ja inimasustusest Parnu umbruses. --Liivimaa geoloogia. Tartu, 119-123.
Saarnisto, M. 1970. The Late Weichselian and Flandrian history of
the Saimaa lake complex.--Commentationes Physico Mathematicae, 37.
Societas Scientarum Fennica, 1-107.
Saarnisto, M. 1971. The upper limit of the Flandrian transgression
of Lake Paijanne.--Commentationes Physico Mathematicae, 41. Societas
Scientarum Fennica, 150-170.
Saukonen, J. 2000. Meren rannalla sijainneiden pyyntikultuurin
asuinpaikkojen inventointi.--Arkeologinen inventointi. Opas inventoinnin
suunnitteluun ja toteuttamiseen. Helsinki, 113- 132.
Schulz, H.-P. 1996. Pioneerit pohjoisessa.--Suomen Museo, 1996,
5-45.
Siiriainen, A. 1969. Uber die Chronologie der steinzeitlichen
Kustenwohnplatze Finnlands im Lichte der Uferverschiebung.--Suomen
Museo, 1969, 40-73.
Siiriainen, A. 1974. Studies Relating to Shore Displacement and
Stone Age Chronology in Finland. (Finsk Museum, 1973.) Helsinki.
Siiriainen, A. 1978. Archaeological Shore Displacement Chronology
in Northen Ostrobothnia, Finland.--ISKOS, 2. Helsinki, 5-23.
Siiriainen, A. 1982. Shore displacement and archaeology in
Finland.--Studies on the Baltic shorelines and sediments indicating
relative sea-level changes. Proceedings of the Symposium of INQUA Subcommission on shorelines of Northwestern Europe held at the Lammi
Biological Stadion 13th September 1981. (Annales Academiae Scientarum
Fennicae. Series A. III. Geologica-Geographica, 134), 173-184.
Siiriainen, A. & Saarnisto, M. 1970. Laatokan
transgressioraja.--Suomen Museo, 1970, 10-22.
Uino, P., Carpelan, C., Lavento, M., Gerasimov, D. & Lisitsyn,
S. 2004. The Johannes Survey (20-24 May 2002) Karelian Isthmus, Russia.
Manuscript in the Institute for Cultural Research, Department of
Archaeology, University of Helsinki, Finland.
Veski, S. 1998. Vegetation History, Human Impact and
Palaeogeography of West Estonia. Pollen Analytical Studies of Lake and
Bog Sediments. (Striae, 38.) Uppsala.
[TEXT NOT REPRODUCIBLE IN ASCII.]
Timo Jussila and Aivar Kriiska
Timo Jussila, Mikroliitti Oy, Iivisniemenkatu 2, 02260 Espoo,
Finland; mikroliitti@dlc.fi
Aivar Kriiska, University of Tartu, Lossi 3, 51003 Tartu, Estonia;
aivark@ut.ee
(1) In geological and archeological literature hitherto: diagram of
shore-lines (Donner 1966, Fig. 3) and distance diagram (Siiriainen 1978,
Fig. 2) in English; in Finnish etaisyysdiagrammi (Donner 1978, Fig. 47)
and in Estonian maapinna toususpekter (Moora & Raukas 2003, Fig.
34).
(2) Considering the available maps and research of the depression
of Lake Vortsjarv, 330 [degrees] has been offered as the azimuth of the
quicker upheaval of land for maps in the Lambert projection (Moora &
Raukas 2003, 88).
(3) Eesti. Teede ja turismi kaart. Moskva 1990. Estonia. (The road
and tourist map. Moscow 1990.)
(4) Beginning of the Late Mesolithic 6500 cal BC, the Early
Neolithic 4900 cal BC, the Middle Neolithic 4200/4000 cal BC and the
Late Neolithic 3200/3000 cal BC (see Lang & Kriiska 2001).
(5) As in the West Estonian archipelago mineral addition dominates
in the pottery of foraging Neolithic it is very difficult to distinguish
between the end of the typical combed ware and the beginning of the late
combed ware as on the mainland the latter is again clearly expressed by
a change in the admixture of the clay mass. There the mineral admixture
of the typical combed ware is replaced by organic matter: vegetable
remains and/or shell debris are characteristic components of the late
combed ware (Kriiska 1995, 75-76, 86).
(6) The numbers of the shores correspond to their sequence in the
distance- elevation diagram presented in Figure 4.
(7) Of course the using of considerably older wood for fire
material cannot be excluded either. This phenomenon can actually affect
most of the radiocarbon dates obtained from Estonian coastal settlement
sites.
(8) The Tokarevo 1 settlement site (altitude 14 m asl), which is
situated on the Karelian Isthmus on the fossilized beach of the Gulf of
Finland 88-90 km from the baseline, and whose material included combed
ware, is dated to 3500-3300 cal BC by the shore displacement chronology.
The shore displacement date of the Tokarevo 2 settlement site (altitude
12 m asl) that also included combed ware is 3100-2900 cal BC. The date
of Vaahtola Karhusuo (altitude 14 m asl) with its biface flint arrowhead
characteristic of combed ware cultures is 3500-3300 cal BC by the shore
displacement chronology. The shore displacement date of the settlement
site of Metsakyla Sulfiittitehdas (altitude 18 m asl), a site without
any pottery, is 4400-4200 cal BC and in case the site has been under
transgression 5600-5700 cal BC (for information on the sites and their
find material see Uino et al. 2004).
Metoodika ja luhike uurimislugu
Laiu alasid katva rannasiirdekronoloogia loomiseks on parim meetod
kauguskorgusdiagramm. Selle abil tehtud kronoloogia pohineb maa
kallakul, mis tuleneb piirkondlikest erinevustest maakerkes.
Kaugus-korgusdiagrammis esitatakse muistsed rannajooned tasapindadena,
mis projitseeritakse diagrammi sirgetena. Diagrammi horisontaalskaalal
naidatakse kaugus valitud pohiliinist (joon 3) ja vertikaalskaalal
korgus praegusest merepinnast. Tanapaevane rand on diagrammis
horisontaalne ja muinasrannad eri viisil kaldes.
Rannasiirdekronoloogia loomisel liidetakse diagrammi uuritavalt
alalt kogutud andmed samaaegsetest randadest. Tavaliselt piisab kahest
uheaegsest rannast diagrammi eri osades, mille vahele projitseeritav
sirge markeerib selle konkreetse aja rannajoont. Kindla ajaga liituva
rannajoone tapne maaratlemine on aga raske ja sageli ei ole olemas
andmeid taiesti samaaegsetest randadest voi on need tolgenduslikud
(naiteks [sup.14]C dateeringud). Seeparast ollakse praktikas sunnitud
kasutama mitmeid eri meetodeid sunkroonsete randade saamiseks ja
dateerimiseks.
Niisiis otsitakse rannasiirdekronoloogia tegemisel samaaegseid
rannajooni ja dateeritakse need. Igal uksikjuhul on tarvilik vaagida
korguse kohta kaiva teabe usaldusvaarsust ja vanusemaarangute tapsust
ning kiviaja asulate puhul otsustada, kas tegemist on olnud rannasidusa
elupaigaga. Lopptulemused soltuvad dateeritud randade kohta oleva teabe
hulgast ning nende vanuse- ja korgusmaarangute tapsusest.
Geoloogid on kasutanud kaugusdiagrammi muinasrandade ja nende
kallaku kirjeldamiseks juba 20. sajandi algul. 1920. aastatel algas
Laanemere rannasiirdel pohineva Soome esiajaloolise keraamika suhtelise
kronoloogia loomine ja samal kumnendil prooviti kiviaegseid asulakohti
juba kaugus-korgusdiagrammi abil dateerida. Hiljem on seda andmestikku
oluliselt taiendatud ja voetud arvesse radiosusiniku dateeringud.
Eestis ei ole seni arheoloogiliste muististe dateerimiseks kaugus-
korgusdiagrammi kasutatud. Uksikmuististe dateerimiseks on tehtud vaid lihtsaid neotektoonikal pohinevaid arvutusi.
Rannapindade paigaldamine ja dateerimine Eesti arheoloogilise
ainese pohjal
Eesti kiviaja rannasiirdekronoloogia koostamisel on voetud arvesse
60 MandriEesti rannikul ja Laane-Eesti saartel paiknevat kiviaegset
asulakohta (joon 3, 4; tabel 2). Need asetati kaugus-korgusdiagrammile,
mootes iga objekti kauguse 1 : 350 000 mootkavas Eesti kaardile
projitseeritud pohiliinist. Viimane joonistati 56 [degrees]-se nurga all
joonel Rannametsa-Olustvere-Avinurme-Narva. See lahtub (on risti)
maksimaalse maakerke asimuudist, mida Eestis on Litoriinamere
rannaprotsesside vaatlemisel upris uldiselt paigutatud suunda 326
[degrees] ning mis paikneb laias laastus neotektooniliste isobaaside 0
ja +1 mm/aastas vahel (vt nt Miidel 1995, joon 1).
Lisaks arheoloogilistele andmetele on arvestatud pinnavorme.
Koikidel muististel on maaratud kultuurkihi alumise piiri korgus
praegusest merepinnast ja peamiselt maastiku reljeefi alusel
prognoositud asustusaegne veetase. Rannajoonte projitseerimiseks ja
dateerimiseks on kasutatud 33 radiosusiniku dateeringut (tabel 1).
Kaugus-korgusdiagrammi koostamisel jagati asulakohad olemasolevate
teadmiste pohjal viide pohilisse kronoloogilisse ruhma:
keskmesoliitikum, hilismesoliitikum, varaneoliitikum, keskneoliitikum ja
hilisneoliitikum (joon 4; tabel 2).
Radiosusiniku dateeringute jargi voib vanimana eristada rannajoont
vanusega 5700 aastat eKr Vohma I ja Kopu IV/V asulakohtade vahel.
Muististe kaugused pohiliinist on vastavalt -141,8 km ja -105,5 km ning
kaugus teineteisest sobiv, et projitseerida piisava tapsusega rannajoon.
Maastiku reljeefi arvestades paiknes Kopu IV/V asustusaegne mererand
arvatavasti 27,5 m ja Vohma I asustusaegne rand 20,5 m korgusel
praegusest merepinnast (joon 2). Neid uhendav joon annab maa kalde
gradiendiks 0,193 m/km.
Jargmisse ajahorisonti kuulub radiosusiniku dateeringute jargi kolm
asulakohta: Ruhnu II, Kopu VII/VIII ja Pahapilli I, kusjuures rannajoone
saab tekitada vaid esimese ja teise muistise vahele. Radiosusiniku
maarangud neist kohtadest voimaldavad selle dateerida aastaga 5100 eKr.
Neid uhendav joon annab maa kalde gradiendiks 0,1255 m/km.
Varaneoliitilise rannajoone eristamiseks on kasutada viis
radiosusinikumeetodil dateeritud asulakohta: Riigikula IV, Riigikula IX,
Riigikula XII, Kopu IA ja Ruhnu II. Nende korgusi ja paiknemist
kaugus-korgusdiagrammis arvestades on ainuke voimalus projitseerida
rannajoon samaaegsete asulakohtade vahele Riigikulas ja Kopus. Kopu IA
asulakoha vanimate dateeringute aegne (umbes 4500 aastat eKr) meri oli
maastiku reljeefi arvestades umbes 24,5 m korgusel praegusest
merepinnast (joon 1). Riigikula IV asulakohal vastab sellele ajale
veetase korgusel 8,5 m ule praeguse merepinna. Nii eristub aastaga 4500
eKr dateeritav rannajoon gradiendiga 0,115 m/km, mis on kaldelt igati
sobiv varasemate rannajoontega.
Keskneoliitilise rannajoone projitseerimist takistab asjaolu, et
tuupilise kammkeraamika kultuuri asulakohtadest ei ole Eestis seni uhtki
usaldusvaarset radiosusiniku dateeringut. Seetottu on rannajoone
paigaldamiseks ja dateerimiseks vajalik leida muu lahendus, milleks on
kaesolevas uurimuses kasutatud leiuainese arheoloogilis-tupoloogilist
analuusi. Selget ja muust keraamikast uhemotteliselt eristuvat tuupilist
kammkeraamikat on leitud Ranniku-Eestis Kopu IB, Lemmetsa II, Malda,
Sindi-Lodja III, Joekalda ja Naakamae asulakohtadest. Asetades need
asulakohad kaugus-korgusdiagrammile, nahtub, et need ei asetu uhele
rannajoonele, vaid naivad ajaliselt hajuvat. Lemmetsa II ja Naakamae on
alumised ja neist madalamal paiknevatest muististest ei ole tuupilist
kammkeraamikat leitud. Molemat asulakohta uhendab ka see, et elutegevus
jatkus neis paikades veel tuupilisele kammkeraamikale jargnenud hilise
kammkeraamika perioodil, samas puuduvad aga tuupilise kammkeraamika
kultuurist vanemad asustusjaljed. Seega elati seal just perioodil, kui
tuupiline kammkeraamika vahetus hilise kammkeraa mikaga. Arvestades
hilise kammkeraamika alguse dateeringuid Eestis, Soomes ja Latis, voib
selle uleminekuaja dateerida umbes aastaga 3600 eKr ja nii ajaldada ka
neid asulakohti uhendava rannajoone. Viimase asend ja kalle (0,082 m/km)
kaugus-korgusdiagrammil on teisi rannapindu arvestades sobivad.
Noorimad puugikultuuri asulakohad Ranniku-Eestis kuuluvad
hilisneoliitikumi ja seonduvad hilise kammkeraamika kultuuriga. Hilist
kammkeraamikat, mis ajaliselt voiks kuuluda hilisneoliitikumi, on leitud
Loona, Naakamae, Kasekula, Lemmetsa I ja Kudrukula asulakohtadest.
Teistes muististes voib seda tuupi keraamika olla ka vanem kui 3200/3000
aastat eKr, mis on kokkuleppeliseks kesk- ja hilisneoliitikumi piiriks
Eestis. Nii nagu eelmise rannajoone puhul, eristuvad kaks asulakohta -
Loona ja Kudrukula -, mis on diagrammil koige alumised. Radiosusiniku
dateeringud on neis aga erinevad (tabel 1).
Kui Loona puhul on asustusaegne mererand maastiku reljeefi
arvestades suhteliselt hasti maaratav ja lauget pinnamoodi arvestades ei
olnud see vaga pikaajaline rannaasulakoht, siis Kudrukula
paleogeograafia on paljus ebaselge. Lisaks vois seal juba kiviajal
kujuneda vaike jogi (Kudrukula oja), mis andis seal ka mere taandudes
ehk voimaluse asustuse jatkumiseks. Nii voib Loona dateeringut
arvestades prognoosida veetaseme korguseks 2700. aastal eKr 11 m
praegusest merepinnast. Kuna Kudrukula ei sobi oma andmete ebatapsuselt
Loonaga uheaegse rannajoone projitseerimiseks, tuleb esialgu leppida
vaid arvutusliku prognoosiga. Arvestades eelnevate rannajoonte vahelise
kallaku muutuseks aastas umbes 0,000035 m/km, peaks aastasse 2700 eKr
kuuluva rannajoone gradient olema 0,0523 m/km. Kui selle kalde jargi
esitada rannajoon Loona korguse kaudu, paiknes toonane meri Kudrukula
asulakoha oletatavast alumisest piirist 1 m allpool.
Aeggradientkovera abil tulemuste kontrollimine ja tapsustused
Kaugus-korgusdiagrammi pohjal tekkiv aeggradientkover peab olema
korraparane ja uhtlane. Meie tulemuste jargi saadud koveras on aga
margatav erand 5100. aasta kohal eKr (joon 5A). See sunnib rannajoonte
projitseerimisel kasutatud aluseid uuesti ja pohjalikumalt vaatlema.
Kuna neoliitiliste rannajoonte kohal on aeggradientkover korraparane ja
uhtlane ning arheoloogilise ainese pohjal on voimatu nende kallet
vahendada nii palju, et noorema hilismesoliitilise rannapinna osa
koverat parandada, peab viga olema rannajoones vanusega 5100 aastat eKr.
Ka vanim rannajoon vajab veidi kohendamist, muutes kas dateeringut
vanemaks voi gradienti laugemaks. Viimane on voimalik, sest Kopu VI/V
asulakoha puhul ei ole olulist vahet, kui veepinda alandada 0,5 m vorra
ja oletada asustusaegne veepind 27 m korgusele tanapaevasest
merepinnast. Saadud parandatud rannajoone gradient on 0,179 m/km.
Nagu eelnevalt todetud, on aastaga 5100 eKr dateeritud rannajoon
voimatu ja vajab dateeringutes ja/voi gradiendis radikaalseid muutusi.
Teades, et vaadeldaval ajajargul on ookeani pinnatousust tingitud
Litoriinamere transgressioon Laanemere noos olnud metakroonne, on siiani
kasutatud meetod (eriti andmete vahesust arvestades) raskesti kasutatav.
Seetottu voeti primaarseks aeggradientkover, ning kasutades vanimaid
parandatud ja neoliitilisi rannajooni, joonestati kasitsi graafiliselt
korraparane ja uhtlane aeggradientkover (joon 5B).
Vottes arvesse radiosusinikumeetodil dateeritud asulakohad, mille
puhul ei ole voimalik selgelt naidata nende jaamist transgressiooni
alla, projitseeriti hulk mesoliitilisi rannapindu aeggradientkovera
abil. Dateeringute ebatapsuse ja andmete vahesuse tottu ei anna see
siiski piisavalt head tulemust, kusjuures Ruhnu mesoliitilised
asulakohad erinevad teistest silmatorkavalt. Nende kaasamisel peaks
Kopus veetase tousma korgemale kui 30 m ja see oleks vastuolus
praeguseks poolsaarelt kogunenud nii arheoloogilise kui ka geoloogilise
andmestikuga ning ka koik Saaremaa asulakohad jaaksid mitmemeetrise
transgressiooni alla. Nii tuleb todeda, et Ruhnu aines ei ole praegu
meie rannasiirdekronoloogias kasutatav, pohjuseks on kas erinevus
asustusviisis voi maakerkes. Molemad voimalused nouavad kontrollimist.
Kogu andmestikku arvestades voeti suund prognoosivale valjundile,
saamaks aluse edasisteks uurimisteks ja abivahendi valitoode
teostamiseks. Selleks asetati aeggradientkovera pohjal diagrammi neli
joont dateeringutega 5500, 5200, 5000 ja 4700 aastat eKr, sobitades need
kasitsi diagrammi arvestusega, et nende rannatousu kover oleks uhtlane
(mida eeldab olemasolev geoloogiline aines), nii et need ei oleks Kopu,
Vohma ja Pahapilli arheoloogilise ainesega vastuolus.
Saadud tulemus osutab Litoriinamere aeglasele metakroonsele
transgressioonile, kusjuures Litoriinamere korgemate rannamoodustiste
kujunemise voib Eesti alal dateerida vahemikku 5500 aastat eKr (Kopu)
kuni 4700-4500 aastat eKr (Parnu ja Narva joe alamjooks).
Tolgendus ja vordlus
Uurimusse kaasatud 60 Mandri-Eesti ranniku ja Laane-Eesti saarte
kiviaja asulakohast on 51 dateeritavad rannasiirde jargi.
Piisava usaldusvaarsusega radiosusinikumeetodil dateeritud
Sindi-Lodja I ja II asulakohad parinevad Litoriinamere algusest, mil meri oli mitmeid meetreid allpool hilisemast Litoriinamere
transgressiooni maksimumist. Andmete vahesus sellest perioodist ei
voimalda neid hiljem mere poolt ule ujutatud ja mitme meetri paksuse
liivakihi alla mattunud muistiseid dateerida rannasiirdekronoloogia abil
hilisemasse aega kui 5700 aastat eKr.
Ruhnu saare asulakohad peab esialgu taiesti valja jatma. Nagu
oeldud, voib selle pohjuseks olla erinevus asustusviisis voi maakerkes.
Tegemist on kas merest korgemal paiknenud vaikese rannajarve kaldal
asunud elupaikadega voi on Ruhnu ja muude Eesti alade vahel maakerke
murdejoon.
Hiiumaa asulakohtadest ei ole mererannas paiknenud Kopu XVII
asulakoht. See praegusest meretasemest 34 m korgemal asuv elupaik rajati
toenaoliselt prae guse Koivasoo kohal olnud jaanukjarve kaldale ning
seetottu ei ole seda voimalik dateerida Laanemere randade muutust
jalgiva kronoloogia abil.
Laias laastus on rannasiirdekronoloogiaga saadud dateeringud
vastavuses muististest saadud radiosusiniku vanusemaarangute ja
esemetupoloogiast lahtuvate dateeringutega (tabel 2). Probleemsed on
pohiliinist 100-110 km kaugusel ja 21-22 m korgusel paiknevad (Saaremaa
ja Laane-Eesti) asulakohad, kus veetase on pusinud pikka aega asulate
vahetus laheduses, mistottu on rannaasulad voinud samades paikades olla
isegi enam kui tuhat aastat. Niisugustel juhtudel on hilismesoliitikumi
ja varaneoliitikumi asulakohti ilma radiosusiniku dateeringute voi
arheoloogilise ainese suvaanaluusita voimatu eristada. Sama tuleb
rakendada juhtudel, kui asulakohad on jaanud transgressiooni alla ja
paigad on olnud mererannaasulateks sobilikud nii transgresseeruvas kui
ka regresseeruvas faasis.
Haid ajalisi pidepunkte pakub meie koostatud rannasiirdekronoloogia
tuupilise kammkeraamika kultuurile, millest seni ei ole Eestist uhtki
kindla kontekstiga radiosusiniku dateeringut. Rannasiirdedateeringud
jaavad toenaosemaid vanuseid arvestades (tabel 2) vahemikku 4120-3600
aastat eKr, vastates hasti naabermaadest saadud vanusemaarangutele.
Kaesolevas artiklis esitatavas kronoloogias ei ole markimisvaarseid
vastuolusid varem geoloogiliselt pohjalt tehtud jareldustega
rannaprotsesside kohta Eestis. Vorreldes naiteks Litoriinamere
maksimaalse rannajoone korgust (tabel 3), on tulemused upris sarnased,
eriti Kopu poolsaarel, kus muinasrandu on fikseeritud seni koige
pohjalikumalt.
Eesti kiviaja ainese baasil tehtud rannasiirdekronoloogia peaks
pohimotteliselt olema rakendatav ka Karjala kannasel kuni piirkonna
loodeosas taheldatud maakerke murdeliinini. Arvestades mootmistapsust,
vastavad meie kronoloogia pohjal saadavad Litoriinamere transgressiooni
maksimumi korgusprognoosid vordlemisi hasti geoloogilistele
tahelepanekutele, eriti 1930. aastatel E. Hyyppa poolt saadud
tulemustele. A. Miettineni (2002) hiljutiste uurimustega vorreldes on
meie kronoloogia kohaselt Karjala kannasel ja Ingerimaal olnud
transgressioon metakroonsem, kusjuures piirkonna loodeosas saavutas see
korgeima taseme varem (5500 aastat eKr) ja kaguosas hiljem (4500 aastat
eKr). Kahjuks ei ole Karjala kannasel radiosusiniku meetodil dateeritud
mereranna asulakohti, mistottu on vordlus sealsete arheoloogiliste
muististega raskendatud. Kasutades aga arheoloogiliste leidude
dateeringut, ei ole nelja testimiseks voetud Karjala kannase asulakoha
(Tokarevo 1, Tokarevo 2, Vaahtola Karhusuo ja Metsakyla) aines meie
kronoloogiaga vastuolus.
Table 1. The radiocarbon dates used to create the shore-displacement
chronology
Tabel 1. Ran nasiirdekronoloogia tegemisel kasutatud radiosusiniku
dateeringud
Age with the Age with the
probability of probability of
Site [sup.14]C-year 95.4% (cal BC) * 68.2% (cal BC)
Sindi-Lodja IA 8070[+ or -]70 7350-6700 7290-6830
Sindi-Lodja II 8035[+ or -]80 7300-6650 7080-6770
Vohma I 6950[+ or -]100 6010-5640 5970-5720
Vohma I 6750[+ or -]50 5730-5560 5715-5620
Vohma I 6330[+ or -]100 5480-5040 5470-5140
Vohma I 6245[+ or -]200 5650-4700 5500-4900
Kopu IV/V 6757[+ or -]50 5730-5560 5715-5625
Kopu IV/V 6640[+ or -]60 5670-5470 5620-5490
Ruhnu II 6400[+ or -]170 5700-4850 5530-5080
Ruhnu II 6150[+ or -]60 5290-4850 5230-4990
Pahapilli I 6370[+ or -]180 5650-4850 5510-5070
Kopu VII/VIII 6172[+ or -]51 5290-4950 5260-5040
Riigikula IV 6023[+ or -]95 5250-4650 5040-4780
Riigikula IV 5624[+ or -]115 4800-4200 4590-4340
Riigikula IX 5469[+ or -]111 4550-4000 4460-4110
Riigikula XII 52688 4250-3960 4220-3980
Kopu IA 5698[+ or -]70 4710-4360 4670-4450
Kopu IA 5604[+ or -]52 4540-4340 4490-4360
Kopu IA 5575[+ or -]50 4520-4330 4455-4355
Kopu IA 5464[+ or -]96 4500-4040 4450-4160
Kopu IA 5460[+ or -]100 4500-4040 4450-4110
Kopu IA 5370[+ or -]68 4340-4040 4330-4050
Kopu IA 5330[+ or -]90 4340-3980 4320-4040
Ruhnu II 5400[+ or -]150 4550-3800 4360-4040
Ruhnu II 5400[+ or -]100 4450-3980 4340-4050
Naakamae 4125[+ or -]85 2890-2470 2870-2580
Loona 4270[+ or -]75 3100-2600 3020-2700
Loona 4050[+ or -]80 2900-2350 2860-2460
Kudrukula 4860[+ or -]60 3780-3510 3710-3380
Kudrukula 4835[+ or -]100 3950-3350 3710-3380
Kudrukula 4770[+ or -]60 3660-3370 3640-3380
Kudrukula 4750[+ or -]100 3800-3100 3640-3370
Kudrukula 4180[+ or -]70 2910-2570 2880-2640
Archaeological
Site Lab. No. culture
Sindi-Lodja IA Ua-17013 Kunda
Sindi-Lodja II Ta-2769 Kunda
Vohma I Ta-2659 Kunda
Vohma I Ta-2646 Kunda
Vohma I Ta-2649 Kunda
Vohma I Ta-2652 Kunda
Kopu IV/V Tln-2016 Kunda
Kopu IV/V Ta-2533 Kunda
Ruhnu II Le-5629 Kunda
Ruhnu II Le-5627 Kunda
Pahapilli I Le-5452 Kunda
Kopu VII/VIII Tln-2024 Kunda
Riigikula IV Tln-1989 Narva
Riigikula IV Tln-1990 Narva
Riigikula IX Tln-1890 Narva
Riigikula XII Tln-1992 Narva
Kopu IA Tln-1901 Narva
Kopu IA Tln-1873 Narva
Kopu IA Le-5452 Narva
Kopu IA Tln-1898 Narva
Kopu IA Ta-2686 Narva
Kopu IA Tln-1871 Narva
Kopu IA Ta-493 Narva
Ruhnu II Le-5628 Narva
Ruhnu II Ta-2716 Narva
Naakamae Ua-4822 Late Combed Ware
Loona Ua-4824 Late Combed Ware
Loona Ua-4825 Late Combed Ware
Kudrukula Cams-6266 Late Combed Ware
Kudrukula Ua-4827 Late Combed Ware
Kudrukula Cams-6265 Late Combed Ware
Kudrukula Ua-4826 Late Combed Ware
Kudrukula Tln-495 Late Combed Ware
* The basis of the calibrations is the computer program
CAL40.DTA OxCal v2. 18 cub r:4 sd:12 prob[chron].
Table 2. Concentrated data about settlement sites embraced in
Estonian shore displacement chronology and shore displacement
dates
Tabel 2. Rannasiirdekronoloogiasse holmatud asulakohtade
koondandmed ja dateeringud rannasiirde alusel
Nro Period Site Distance Z1 Z2
1 MM Sindi-Lodja I -15.8 3.5 1.8
2 MM Sindi-Lodja II -15.8 4.6 3.6
3 LM Kopu XIV -143.0 29.0 27.0
4 LM Kopu III -141.8 28.0 27.0
5 LM Kopu IV/V -141.8 28.0 27.5
6 LM Kopu VI -141.8 29.0 27.0
7 LM Kopu VII/VIII -142.3 29.0 27.7
8 LM Kopu IX -141.8 29.0 27.0
9 LM Kopu XVII -143.9 34.0 31.0
10 LM Kopu II -141.4 29.0 28.0
II LM Pahapilli II -106.2 22.0 20.0
12 LM Vohma I -105.5 22.0 20.5
13 LM Vohma II -105.5 22.0 20.0
14 LM Vohma III -105.5 22.0 20.0
15 LM Vohma VI -105.5 22.0 20.0
16 LM Vohma VII -105.5 22.0 20.0
17 LM Pahapilli I -105.9 22.0 20.0
18 LM Vohma IV -105.2 22.0 20.0
19 LM Vohma V -105.2 22.0 20.0
20 LM Valge-Risti -100.8 21.0 20.0
21 LM Ruhnu I -10.9 12.0 11.0
22 LM Ruhnu V -10.9 13.0 11.0
23 LM Ruhnu VI -10.2 13.0 11.0
24 LM Ruhnu III -10.9 12.0 11.0
25 LM-EN Ruhnu II -10.9 13.0 11.5
26 EN Konnu -72.3 16.0 15.0
27 EN Vihasoo III -85.1 19.0 18.0
28 EN Ruhnu IV -10.5 12.0 10.0
29 EN Riigikula IV -2.3 9.0 8.0
30 EN Riigikula V -2.1 9.0 8.0
31 EN Riigikula VI -2.1 9.0 8.0
32 EN Riigikula VII -2.1 9.0 8.0
33 EN Riigikula VIII -2.1 9.0 8.0
34 EN Riigikula IX -1.9 9.0 8.0
35 EN Riigikula X -1.9 9.0 8.0
36 EN Riigikula XI -1.9 9.0 8.0
37 EN Riigikiila XV -1.8 8.0 7.0
38 EN Riigikula XII -1.8 9.0 8.0
39 EN Riigikula XIII -1.8 9.0 8.0
40 EN Kopu I A -141.4 26.0 25.0
41 EN Riigikula II -3.2 9.0 8.0
42 EN Riigikula I -2.8 9.0 8.0
43 EN Riigikula III -2.6 9.0 8.0
44 MN Kopu I B -141.4 23.5 22.0
45 MN-LN Lemmetsa II -31.6 11.0 10.0
46 MN Malda -31.4 11.0 10.0
47 MN Rouste -73.2 17.5 16.5
48 MN Sindi-Lodja III -15.8 9.0 8.5
49 MN Joekalda -15.9 9.0 8.5
50 MN-LN Naakamae -86.1 15.0 14.0
51 N Kopu XIII -143 26.0 23.0
52 N Kopu XVI -141.8 24.0 23.0
53 N Kopu X -141.4 22.0 20.0
54 LN Kopu XII -144.2 21.0 20.0
55 LN Kopu XV -141.8 18.0 15.0
56 LN Kopu XI -141.2 19.0 17.0
57 LN Loona -101.2 12.0 11.0
58 LN Kasekiila -72.3 11.0 10.0
59 LN Lemmetsa I -29.8 10.0 9.0
60 LN Kudrukula -5.6 7.0 6.0
[sup.14]C BP BP BP
Nro Site cal BC Max. Min. Prob.
1 Sindi-Lodja I 6990[+ or -]490 2838 1622 1459
2 Sindi-Lodja II 6975[+ or -]325 3546 2514 2919
3 Kopu XIV 7700 7329 7329
4 Kopu III 7700 7200 7414
5 Kopu IV/V 5600[+ or -]130 7700 7200 -
6 Kopu VI 7700 7414 7414
7 Kopu VII/VIII 5120[+ or -]170 7700 7371 -
8 Kopu IX 7700 7414 7414
9 Kopu XVII - - -
10 Kopu II 7600 7450 -
II Pahapilli II 7700 6500 6406
12 Vohma I 5355[+ or -]655 7700 6540 6540
13 Vohma II 7700 6540 6425
14 Vohma III 7700 6540 6425
15 Vohma VI 7700 6540 6425
16 Vohma VII 7700 6540 6425
17 Pahapilli I 5250[+ or -]400 7700 6540 6425
18 Vohma IV 7675 6580 6443
19 Vohma V 7675 6580 6443
20 Valge-Risti 7700 6441 6580
21 Ruhnu I - - -
22 Ruhnu V - - -
23 Ruhnu VI - - -
24 Ruhnu III - - -
25 Ruhnu II 5260[+ or -]270 - - -
4175[+ or -]375
26 Konnu 6354 5989 6111
27 Vihasoo III 7560 6390 6500
28 Ruhnu IV - - -
29 Riigikula IV 4950[+ or -]300 6973 5857 6179
30 Riigikula V 6973 5857 6179
31 Riigikula VI 6973 5857 6179
32 Riigikula VII 6973 5857 6179
33 Riigikula VIII 6973 5857 6179
34 Riigikula IX 4275[+ or -]275 6970 5857 6179
35 Riigikula X 6970 5857 6179
36 Riigikula XI 6970 5857 6179
37 Riigikiila XV 6223 5185 5531
38 Riigikula XII 4105[+ or -]145 6945 5877 6223
39 Riigikula XIII 6945 5877 6223
40 Kopu I A 4345[+ or -]355 7000 6500 6643
41 Riigikula II 7000 5793 6114
42 Riigikula I 7000 5840 6140
43 Riigikula III 6973 5857 6179
44 Kopu I B 6347 6119 6119
45 Lemmetsa II 6162 5600 5787
46 Malda 6187 5600 5796
47 Rouste 7457 6334 6453
48 Sindi-Lodja III 5979 5229 5742
49 Joekalda 5979 5229 5742
50 Naakamae 2680[+ or -]210 5820 5482 5600
51 Kopu XIII 6925 6470 6245
52 Kopu XVI 6424 6195 6271
53 Kopu X 6119 5890 5814
54 Kopu XII 5930 5705 5780
55 Kopu XV 5502 5256 5011
56 Kopu XI 5675 5433 5350
57 Loona 2725[+ or -]375 4914 4543 4700
58 Kasekiila 5097 4700 4832
59 Lemmetsa I 5835 5214 5429
60 Kudrukula 3260[+ or -]690 5343 4373 4700
Shore
displacement BP BP BP
Nro Site date BC Max2 Mint Prob2
1 Sindi-Lodja I 840BC-540AD >7700 - -
2 Sindi-Lodja II 1550-510 >7700 7680 -
3 Kopu XIV 5700-5330 - - -
4 Kopu III 5700-5200 - - -
5 Kopu IV/V 5700-5200 - - -
6 Kopu VI 5700-7410 - - -
7 Kopu VII/VIII 5700-5370 - - -
8 Kopu IX 5700-7410 - - -
9 Kopu XVII - - - -
10 Kopu II 5600-5450 - - -
II Pahapilli II 5700-4410 - - -
12 Vohma I 5700-4540 - - -
13 Vohma II 5700-4430 - - -
14 Vohma III 5700-4430 - - -
15 Vohma VI 5700-4430 - - -
16 Vohma VII 5700-4430 - - -
17 Pahapilli I 5700-4430 - - -
18 Vohma IV 5680-4440 - - -
19 Vohma V 5680-4440 - - -
20 Valge-Risti 5700-4440 - - -
21 Ruhnu I - - - -
22 Ruhnu V - - - -
23 Ruhnu VI - - - -
24 Ruhnu III - - - -
25 Ruhnu II - - - -
26 Konnu 4350-3990 7700 7387 7617
27 Vihasoo III 5560-4390 - - -
28 Ruhnu IV - - - -
29 Riigikula IV 4970-3860 - - -
30 Riigikula V 4970-3860 - - -
31 Riigikula VI 4970-3860 - - -
32 Riigikula VII 4970-3860 - - -
33 Riigikula VIII 4970-3860 - - -
34 Riigikula IX 4970-3860 - - -
35 Riigikula X 4970-3860 - - -
36 Riigikula XI 4970-3860 - - -
37 Riigikiila XV 4220-3190 7178 6809 7067
38 Riigikula XII 4950-3880 - - -
39 Riigikula XIII 4950-3880 - - -
40 Kopu I A 5000-4640 - - -
41 Riigikula II 5000-3790 - - -
42 Riigikula I 5000-3840 - - -
43 Riigikula III 4970-3860 - - -
44 Kopu I B 4350-4120 - - -
45 Lemmetsa II 4160-3600 7412 7100 7324
46 Malda 4190-3600 7406 7086 7312
47 Rouste 5460-4330 - - -
48 Sindi-Lodja III 3980-3230 7335 7050 7175
49 Joekalda 3980-3230 7335 7050 7175
50 Naakamae 3820-3480 - - -
51 Kopu XIII 4930-4250 - - -
52 Kopu XVI 4420-4200 - - -
53 Kopu X 4120-3810 - - -
54 Kopu XII 3930-3700 - - -
55 Kopu XV 3500-3010 - - -
56 Kopu XI 3680-3350 - - -
57 Loona 2910-2540 - - -
58 Kasekiila 3100-2700 - - -
59 Lemmetsa I 5830-5210 7522 7271 7447
60 Kudrukula 3340-2370 7391 7178 7323
Alternative shore Highest
displacement shore Highest
Nro Site date BC BP shore z
1 Sindi-Lodja I >5700 6500 10.1
2 Sindi-Lodja II >5680 6500 10.1
3 Kopu XIV - 7500 27.4
4 Kopu III - 7500 27.2
5 Kopu IV/V - 7500 27.2
6 Kopu VI - 7500 27.2
7 Kopu VII/VIII - 7500 27.3
8 Kopu IX - 7500 27.2
9 Kopu XVII - 7500 27.5
10 Kopu II - 7500 27.1
II Pahapilli II - 7200 21.4
12 Vohma I - 7200 21.3
13 Vohma II - 7200 21.3
14 Vohma III - 7200 21.3
15 Vohma VI - 7200 21.3
16 Vohma VII - 7200 21.3
17 Pahapilli I - 7200 21.3
18 Vohma IV - 7000 21.2
19 Vohma V - 7000 21.2
20 Valge-Risti - 7000 20.6
21 Ruhnu I - 6500 9.5
22 Ruhnu V - 6500 9.5
23 Ruhnu VI - 6500 9.4
24 Ruhnu III - 6500 9.5
25 Ruhnu II - 6500 9.5
26 Konnu 5700-5390 6700 16.9
27 Vihasoo III - 7000 18.5
28 Ruhnu IV - 6700 9.5
29 Riigikula IV - 6500 8.5
30 Riigikula V - 6500 8.5
31 Riigikula VI - 6500 8.5
32 Riigikula VII - 6500 8.5
33 Riigikula VIII - 6500 8.5
34 Riigikula IX - 6500 8.5
35 Riigikula X - 6500 8.5
36 Riigikula XI - 6500 8.5
37 Riigikiila XV 5180-4810 6500 8.4
38 Riigikula XII - 6500 8.4
39 Riigikula XIII - 6500 8.4
40 Kopu I A - 7500 27.1
41 Riigikula II - 6500 8.6
42 Riigikula I - 6500 8.6
43 Riigikula III - 6500 8.5
44 Kopu I B - 7500 27.1
45 Lemmetsa II 5410-5100 6700 12
46 Malda 5410-5090 6700 12
47 Rouste - 6700 17
48 Sindi-Lodja III 5340-5050 6500 10.1
49 Joekalda 5340-5050 6500 10.1
50 Naakamae - 7000 18.6
51 Kopu XIII - 7500 27.4
52 Kopu XVI - 7500 27.2
53 Kopu X - 7500 27.1
54 Kopu XII - 7500 27.6
55 Kopu XV - 7500 27.2
56 Kopu XI - 7500 27.1
57 Loona - 7200 20.7
58 Kasekiila - 6700 16.9
59 Lemmetsa I 5520-5270 6700 11.8
60 Kudrukula 5390-5180 6500 8.9
Nro site number in the map and the distance diagram
Period estimated archaeological time period
Distance distance from the baseline km
[sup.14]C combined all re-dates and calibrated with cal40.dta
Z1 elevation of the slowest cultural layer
Z2 elevation of the estimated shore level during the
settlement
Max. oldest possible dating, when waterlevel at zl
Min. youngest possible dating, when waterlevel a z-1.5 m
Prob. most propable dating when water level at z2
Shore displacement date BC rounded to nearest ten
Age of the highest Litorina shore BP at the site
Highest shore z, elevation of the highest Litorina shore at the site
Alternative min., max., prob. and dating occurs when site terrain
has been under Litorina transgression
Table 3. The altitude of the maximum of the Litorina Sea
transgression by different researchers
Tabel 3. Litoriinamere transgressiooni maksimumi korgused eri
uurijate alusel
The maximal altitude The lower
(m) of the Litorina The lower reaches reaches of the
Sea transgression of the Parnu River Narva River
10.1 (Sindi-Lodja, 8.5 (Riigikula,
Jussila & Kriiska see Table 2) see Table 2)
Kents 1939 - -
Keccen X. & Payxac A. 1981 10 -
Raukas et al. 1995 8-10 -
Moora & Lougas 1995 - -
Lepland et al. 1996 - 10
The maximal altitude Northwestern
(m) of the Litorina Kopu part of Saaremaa
Sea transgression peninsula Island
27.4 (Ulendi, 21.4 (Vohma,
Jussila & Kriiska see Table 2) see Table 2)
Kents 1939 27.80 -
Keccen X. & Payxac A. 1981 25-26 20
Raukas et al. 1995 - -
Moora & Lougas 1995 between 26 and 30
Lepland et al. 1996 - -
Table 4. The altitude and dates of the maximum of the Litorina Sea
transgression on the Karelian Isthmus and in Ingria by different
researchers
Tabel 4. Litoriinamere transgressiooni maksimumi korgused ja
dateeringud Karjala kannasel ja Ingerimaal eri uurijate alusel
The altitude of The date of the
the maximum of maximum of the
the Litorina Sea Litorina Sea
Distance from transgression transgression cal
the baseline (m)--Miettinen BP--Miettinen
Site (km) 2002 2002
Virolahti -127 23-26 7300-6900
Vysokinskoye -60 13 (15) 7200-6900
Privetninskoye -34 11 7200-6800
Glukhoye -7 8-9 7100-6800
Babinskoye -4 11 7100-6800
The date of the
maximum of the
Litorina Sea
transgression
cal BP--Jussila
& Kriiska
distance-elevation
The altitude of diagram with
the maximum of Estonian Stone
the Litorina Sea Age sites,
transgression lengthened to the
(m)--Jussila & Karelian Isthmus
Site Kriiska
Virolahti 24.8 7500-7200
Vysokinskoye 15.4 7000-6500
Privetninskoye 12.3 6700-6500
Glukhoye 9 6700-6500
Babinskoye 8.7 6700-6500
The altitude of The altitude of
the maximum of the maximum of
the Litorina the Litorina
Sea transgression Sea transgression
Site (m)--Ramsay 1920 (m)--Hyyppa 1937
Virolahti - -
Vysokinskoye 17-18 14-15
Privetninskoye 14 12
Glukhoye 10-11 8-9
Babinskoye - -