Strength in diversity: a spatial dynamic panel analysis of Mexican regional industrial convergence, 1960-2003.
German-Soto, Vicente ; Brock, Gregory
Table 1: Capital stock depreciation rates
State Depreciation rates
Aguascalientes 0.100
Baja California 0.071
Baja California Sur 0.071
Campeche 0.053
Coahuila 0.050
Colima 0.083
Chiapas 0.100
Chihuahua 0.091
Distrito Federal 0.053
Durango 0.083
Guanajuato 0.067
Guerrero 0.071
Hidalgo 0.059
Jalisco 0.059
Mexico 0.071
Michoacan 0.083
Morelos 0.100
Nayarit 0.100
Nuevo Leon 0.067
Oaxaca 0.100
Puebla 0.071
Queretaro 0.067
Quintana Roo 0.100
San Luis Potosi 0.100
Sinaloa 0.100
Sonora 0.100
Tabasco 0.038
Tamaulipas 0.056
Tlaxcala 0.059
Veracruz 0.100
Yucatan 0.071
Zacatecas 0.071
Source: German-Soto (2008)
Comparative Economic Studies
Table 2: Regional industrial output
shares for 29 non-oil states in 2003
Rank Industrial states %
1 Distrito Federal 16.94
2 Mexico 14.69
3 Nuevo Leon 8.26
4 Jalisco 6.13
5 Coahuila 5.95
6 Veracruz 4.22
7 Chihuahua 4.14
8 Guanajuato 4.12
9 Puebla 3.99
10 Baja California 3.22
11 Tamaulipas 3.00
12 Sonora 2.64
13 Queretaro 2.48
14 Hidalgo 2.07
Total 81.85
Rank Non-industrial states %
15 San Luis Potosi 1.97
16 Michoacan 1.63
17 Durango 1.33
18 Aguascalientes 1.33
19 Morelos 1.28
20 Oaxaca 0.98
21 Yucatan 0.84
22 Sinaloa 0.84
23 Guerrero 0.75
24 Tlaxcala 0.69
25 Colima 0.58
26 Zacatecas 0.38
27 Nayarit 0.25
28 Baja California Sur 0.23
29 Quintana Roo 0.22
Total 13.30
Source: Author's own calculations
Table 3: Aggregate industry descriptive
statistics (in logarithms)
Variable Mean Standard Minimum Maximum
deviation
Overall sample
1960-2003 (N = 288)
Labor 0.048 0.062 -0.131 0.401
Capital stock 0.036 0.082 -0.204 0.512
Human capital 0.022 0.061 -0.218 0.222
Per capita 0.013 0.075 -0.211 0.616
product
1960-1985 (N = 160)
Labor 0.064 0.067 0.025 0.120
Capital stock 0.048 0.088 -0.204 0.512
Human capital 0.007 0.066 -0.218 0.222
Per capita 0.014 0.082 -0.211 0.616
product
1988-2003 (N = 128)
Labor 0.028 0.000 0.011 0.011
Capital stock 0.021 0.070 -0.200 0.205
Human capital 0.040 0.048 -0.134 0.188
Per capita 0.012 0.066 -0.176 0.348
product
Variable Mean Standard Minimum Maximum
deviation
Industrialized states only
1960-2003 (N = 126)
Labor 0.046 0.054 -0.131 0.193
Capital stock 0.029 0.066 -0.119 0.205
Human capital 0.023 0.049 -0.140 0.164
Per capita 0.008 0.054 -0.125 0.146
product
1960-1985 (N = 70)
Labor 0.062 0.050 -0.023 0.193
Capital stock 0.031 0.062 -0.109 0.166
Human capital 0.007 0.048 -0.140 0.137
Per capita 0.003 0.057 -0.125 0.135
product
1988-2003 (N = 56)
Labor 0.025 0.051 -0.131 0.169
Capital stock 0.025 0.071 -0.119 0.205
Human capital 0.044 0.042 -0.058 0.164
Per capita 0.014 0.050 -0.123 0.146
product
Non-oil states only
Variable 1960-2003 (N = 261)
Labor 0.047 0.055 -0.131 0.318
Capital stock 0.033 0.069 -0.204 0.205
Human capital 0.021 0.056 -0.165 0.188
Per capita 0.011 0.054 -0.125 0.152
product
1960-1985 (N = 145)
Labor 0.063 0.059 -0.083 0.318
Capital stock 0.039 0.071 -0.204 0.191
Human capital 0.006 0.058 -0.165 0.157
Per capita 0.010 0.060 -0.125 0.152
product
1988-2003 (N = 116)
Labor 0.027 0.043 -0.131 0.169
Capital stock 0.025 0.066 -0.119 0.205
Human capital 0.039 0.049 -0.134 0.188
Per capita 0.012 0.045 -0.123 0.146
product
Non-industrialized states only
Variable 1960-2003 (N = 135)
Labor 0.048 0.057 -0.083 0.318
Capital stock 0.037 0.072 -0.204 0.191
Human capital 0.018 0.063 -0.165 0.188
Per capita 0.013 0.053 -0.109 0.152
product
1960-1985 (N = 75)
Labor 0.063 0.067 -0.083 0.318
Capital stock 0.046 0.078 -0.204 0.191
Human capital 0.005 0.066 -0.165 0.157
Per capita 0.016 0.061 -0.109 0.152
product
1988-2003 [N = 70)
Labor 0.030 0.034 -0.055 0.102
Capital stock 0.026 0.062 -0.103 0.188
Human capital 0.035 0.054 -0.134 0.188
Per capita 0.010 0.040 -0.064 0.099
product
Source: Author's own calculations
Table 4: Spatial autocorrelation using Moran's I test
Unfiltered variables
Y K H N
[I.sub.1960] 0.348 * 0.075 0.004 0.106 **
[I.sub.1965] 0.305 * 0.094 0.270 * 0.132 **
[I.sub.1970] 0.324 * 0.136 ** 0.277 * 0.173 *
[I.sub.1975] 0.405 * 0.077 0.256 * 0.247 *
[I.sub.1980] 0.425 * -0.095 0.044 0.161 *
[I.sub.1985] 0.044 ** 0.115 ** 0.241 * 0.165 *
[I.sub.1988] -0.069 -0.073 0.137 ** 0.164 *
[I.sub.l993] -0.074 -0.089 0.061 0.175 *
[I.sub.1998] -0.074 0.047 -0.158 0.195 *
[I.sub.2003] 0.195 * -0.010 -0.100 0.160 *
Filtered variables
FY FK FH FN
[I.sub.1960] -0.054 0.072 -0.203 0.079
[I.sub.1965] -0.073 0.084 0.014 0.108
[I.sub.1970] -0.116 0.128 0.181 0.148
[I.sub.1975] -0.062 0.077 0.118 0.219
[I.sub.1980] -0.095 -0.121 -0.031 0.145
[I.sub.1985] 0.032 0.079 0.065 0.146
[I.sub.1988] -0.025 -0.099 -0.031 0.147
[I.sub.l993] -0.033 -0.117 0.006 0.156
[I.sub.1998] -0.033 0.015 -0.178 0.175
[I.sub.2003] 0.140 -0.034 -0.214 0.149
Note: * and ** indicate significance of spatial autocorrelation
at 5% and 10%, respectively. Moran's I test is calculated with a
weight matrix based on square inverse distance.
Source: Author's own calculations
Table 5: Long-run equation 5 results [dependent
variable: ln(yt)-ln(yf-l)]
Sample Overall Non-oil
Observations 288 261
Unrestricted regression
ln([y.sub.i,t-1]) -0.066 *** -0.105 ***
(0.007) (0.008)
ln([DELTA]k) 0.043 -0.022
(0.029) (0.054)
ln([DELTA]h) 0.104 0.168 ***
(0.119) (0.053)
ln(n+g+[delta]) -0.273 ** -0.616 ***
[R.sup.2] (0.128) (0.060)
0.24 0.58
m-1 -1.413 -3.436
(0.158) (0.001)
m-2 -1.186 0.190
(0.235) (0.849)
Implied [lambda] 0.013 *** 0.022 ***
(0.001) (0.001)
Implied [alpha] 0.203 0.075
(0.138) (0.183)
Implied [beta] 0.486 0.568 ***
(0.553) (0.181)
p-value 0.000 0.000
[chi square] 157.3 427.6
Sample Industrialized Non-
industrialized
Observations 126 135
Unrestricted regression
ln([y.sub.i,t-1]) -0.083 *** -0.096 ***
(0.009) (0.014)
ln([DELTA]k) 0.079 -0.030
(0.094) (0.061)
ln([DELTA]h) -0.005 0.185 ***
(0.072) (0.064)
ln(n+g+[delta]) -0.689 *** -0.552 ***
[R.sup.2] (0.065) (0.082)
0.71 0.56
m-1 -1.919 -2.792
(0.055) (0.005)
m-2 0.470 -0.797
(0.638) (0.425)
Implied [lambda] 0.017 *** 0.020 ***
(0.001) (0.003)
Implied [alpha] 0.469 0.098
(0.561) (0.197)
Implied [beta] 0.034 0.592 ***
(0.427) (0.207)
p-value 0.000 0.000
[chi square] 463.6 123.2
Overall Non-oil
288 261
Restricted regression
ln([y.sub.i,t-1]) -0.085 *** -0.102 ***
(0.007) (0.010)
ln([DELTA]k)-ln(n+g+[delta]) 0.073 0.162 ***
(0.051) (0.045)
ln([DELTA]h)-ln(n+g+[delta]) 0.114 0.225 ***
(0.091) (0.042)
[R.sup.2]
0.16 0.59
m-1 -1.482 -3.560
(0.138) (0.000)
m-2 -1.349 -0.504
(0.177) (0.614)
Implied [lambda] 0.017 *** 0.021 ***
(0.001) (0.002)
Implied [alpha] 0.268 0.330 ***
(0.188) (0.091)
Implied [beta] 0.419 0.460 ***
(0.333) (0.085)
Wald test of joint significance
p-value 0.000 0.000
[chi square] 139.3 287.2
Industrialized Non-
industrialized
126 135
Restricted regression
ln([y.sub.i,t-1]) -0.089 *** -0.096 ***
(0.011) (0.015)
ln([DELTA]k)-ln(n+g+[delta]) 0.271 *** 0.132 ***
(0.066) (0.033)
ln([DELTA]h)-ln(n+g+[delta]) 0.130 ** 0.228 ***
(0.060) (0.054)
[R.sup.2]
0.70 0.57
m-1 -2.197 -2.715
(0.028) (0.007)
m-2 0.902 -1.663
(0.367) (0.096)
Implied [lambda] 0.018 *** 0.020 ***
(0.002) (0.003)
Implied [alpha] 0.552 *** 0.290 ***
(0.134) (0.072)
Implied [beta] 0.265 ** 0.499 ***
(0.122) (0.120)
Wald test of joint significance
p-value 0.000 0.000
[chi square] 107.5 132.0
Notes: One-step system-GMM based on first differences and levels
equations. The first lagged difference of each variable is used as
an IV. Standard errors are in parentheses. Results of the m-1 and
m-2 tests are the p-values for the null of no serial
autocorrelation. All estimates include time specific effects and
were done using DPD GAUSS software. ***, ** indicate significance
at the 1% and 5% level.
Source: Author's own calculations
Table 6: Closed era results, [dependent variable: ln(yt)-ln(yt-l)]
Sample Overall Non-oil
Observations 160 145
Unrestricted regression
ln([y.sub.i,t-1]) -0.064 ** -0.104 ***
(0.027) (0.015)
ln([DELTA]k) 0.018 -0.031
(0.054) (0.068)
ln([DELTA]h) 0.153 0.189 ***
(0.111) (0.066)
ln(n+g+[delta]) -0.133 -0.584 ***
(0.127) (0.073)
[R.sup.2] 0.30 0.67
m-1 -2.873 -3.086
(0.004) (0.002)
m-2 -0.858 2.729
(0.391) (0.006)
Implied [lambda] 0.013 ** 0.022 ***
(0.005) (0.003)
Implied [alpha] 0.076 -0.121
(0.231) (0.260)
Implied [beta] 0.649 0.722 ***
(0.469) (0.254)
p-value 0.177 0.000
[chi square] 6.311 253.0
Non-
Sample Industrialized industrialized
Observations 70 75
Unrestricted regression
ln([y.sub.i,t-1]) -0.086 *** -0.089 ***
(0.020) (0.023)
ln([DELTA]k) 0.080 -0.058
(0.121) (0.092)
ln([DELTA]h) 0.048 0.213 ***
(0.135) (0.076)
ln(n+g+[delta]) -0.618 *** -0.646 ***
(0.103) (0.084)
[R.sup.2] 0.75 0.67
m-1 -1.940 -2.139
(0.052) (0.032)
m-2 0.898 1.829
(0.369) (0.067)
Implied [lambda] 0.018 *** 0.018 ***
(0.004) (0.004)
Implied [alpha] 0.373 -0.240
(0.565) (0.378)
Implied [beta] 0.224 0.875 ***
(0.628) (0.313)
p-value 0.000 0.000
[chi square] 323.9 137.4
Overall Non-oil
160 145
Restricted regression
ln([y.sub.i,t-1]) -0.112 *** -0.096 ***
(0.042) (0.020)
ln([DELTA]k)-ln(n+g+[delta]) -0.051 0.172 ***
(0.098) (0.051)
ln([DELTA]h)-ln(n+g+[delta]) 0.102 0.213 ***
(0.113) (0.060)
[R.sup.2] 0.05 0.69
m-1 -1.255 -3.151
(0.209) (0.002)
m-2 -0.940 1.897
(0.347) (0.058)
Implied [lambda] 0.023 *** 0.020 ***
(0.009) (0.004)
Implied [alpha] -0.314 0.357 ***
(0.599) (0.106)
Implied [beta] 0.628 0.442 ***
(0.691) (0.125)
Wald test of joint significance
p-value 0.004 0.000
[chi square] 13.60 146.4
Non-
Industrialized industrialized
70 75
Restricted regression
ln([y.sub.i,t-1]) -0.102 *** -0.082 ***
(0.021) (0.022)
ln([DELTA]k)-ln(n+g+[delta]) 0.243 *** 0.191 ***
(0.077) (0.058)
ln([DELTA]h)-ln(n+g+[delta]) 0.112 0.224 ***
(0.114) (0.070)
[R.sup.2] 0.74 0.69
m-1 -2.081 -2.238
(0.037) (0.025)
m-2 1.137 1.056
(0.255) (0.291)
Implied [lambda] 0.021 *** 0.017 ***
(0.004) (0.004)
Implied [alpha] 0.531 *** 0.298 ***
(0.168) (0.090)
Implied [beta] 0.245 0.514 ***
(0.249) (0.162)
Wald test of joint significance
p-value 0.000 0.000
[chi square] 53.03 115.8
Note: See Table 5.
Source: Author's own calculations
Table 7: Open era results, [dependent variable: ln(yt)-ln(yt-l)]
Sample Overall Non-oil
Observations 128 116
Unrestricted regression
ln([y.sub.i,t-1]) -0.075 *** -0.114 ***
(0.018) (0.021)
ln([DELTA]k) -0.332 -0.058
(0.258) (0.068)
In ([DELTA]h) -0.085 0.128 **
(0.195) (0.059)
ln(n+<g+[delta]) -0.915 *** -0.695 ***
(0.270) (0.135)
[R.sup.2] 0.04 0.34
m-1 1.907 -2.444
(0.057) (0.015)
m-2 -0.786 -1.319
(0.432) (0.187)
Implied [lambda] 0.015 *** 0.024 ***
(0.003) (0.004)
Implied [alpha] 0.971 -0.318
(0.754) (0.370)
Implied [beta] 0.250 0.695 **
(0.571) (0.319)
p-value 0.000 0.000
[chi square] 62.76 386.3
Non-
Sample Industrialized industrialized
Observations 56 60
Unrestricted regression
ln([y.sub.i,t-1]) -0.078 *** -0.136 ***
(0.014) (0.022)
ln([DELTA]k) 0.020 -0.043
(0.169) (0.070)
In ([DELTA]h) -0.018 0.133 *
(0.091) (0.078)
ln(n+<g+[delta]) -0.824 *** -0.398 ***
(0.129) (0.148)
[R.sup.2] 0.63 0.03
m-1 -0.246 -2.152
(0.806) (0.031)
m-2 -0.921 -1.713
(0.357) (0.087)
Implied [lambda] 0.016 *** 0.029 ***
(0.003) (0.004)
Implied [alpha] 0.250 -0.193
(2.127) (0.313)
Implied [beta] -0.236 0.589 *
(1.146) (0.347)
p-value 0.000 0.000
[chi square] 346.8 123.6
Overall Non-oil
128 116
Restricted regression
ln([y.sub.i,t-1]) -0.111 *** -0.115 ***
(0.030) (0.024)
ln([DELTA]k)-ln(n+g+[delta]) 0.093 0.146 *
(0.073) (0.077)
ln([DELTA]h)-ln(n+g+[delta]) 0.001 0.229 ***
(0.129) (0.080)
[R.sup.2] 0.01 0.32
m-1 0.917 -2.611
(0.359) (0.009)
m-2 -1.242 -1.302
(0.214) (0.193)
Implied [lambda] 0.023 *** 0.024 ***
(0.006) (0.005)
Implied [alpha] 0.452 0.298 *
(0.357) (0.156)
Implied [beta] 0.008 0.466 ***
(0.632) (0.163)
Wald test
p-value 0.002 0.000
[chi square] 14.82 141.6
Non-
Industrialized industrialized
56 60
Restricted regression
ln([y.sub.i,t-1]) -0.089 *** -0.144 ***
(0.018) (0.025)
ln([DELTA]k)-ln(n+g+[delta]) 0.289 ** 0.035
(0.122) (0.045)
ln([DELTA]h)-ln(n+g+[delta]) 0.156 0.190 **
(0.131) (0.087)
[R.sup.2] 0.61 0.01
m-1 0.668 -2.570
(0.504) (0.010)
m-2 -0.358 -1.907
(0.721) (0.057)
Implied [lambda] 0.018 *** 0.031 ***
(0.003) (0.005)
Implied [alpha] 0.540 ** 0.096
(0.229) (0.121)
Implied [beta] 0.292 0.514 **
(0.245) (0.234)
Wald test
p-value 0.000 0.000
[chi square] 60.13 118.9
Note: See Table 5.
Source: Author's own calculations