Do psychological factors emanating from a financial crisis affect consumption? Evidence from China.
Voon, Jan P. ; Ruifang, Zhang
TABLE 1
DESCRIPTIVE STATISTICS (EMPLOYED--6,993; UNEMPLOYED--3,050)
Mean (SD)
Dependent Employed Unemployed
Variable:
Consumption 2.94 (1.03) 3.05 (0.98)
Independent
Variable:
Wealth 2.39 (0.91) 2.58 (0.83)
Income 2.54 (0.88) 2.76 (0.84)
Anxiety 3.19 (0.85) 3.09 (0.84)
Optimism 3.64 (0.76) 3.72 (0.72)
Job Security 2.77 (0.63) 2.82 (0.58)
Demographic
Variables
Age 43.97 (8.45) 61.15 (10.13)
Total Annual 19809 (18070) 11209 (8551)
Income
Work 23.09 (9.76) 41.16 (9.98)
Experience
(years)
Min
Dependent
Variable:
Consumption 1
Independent
Variable:
Wealth 1
Income 1
Anxiety 1
Optimism 1
Job Security 1
Demographic Employed Unemployed
Variables
Age 21.08 19.67
Total Annual 600 30
Income
Work 0 1
Experience
(years)
Max
Dependent
Variable:
Consumption 5
Independent
Variable:
Wealth 5
Income 5
Anxiety 5
Optimism 5
Job Security 5
Demographic Employed Unemployed
Variables
Age 73.92 61.15
Total Annual 41720 144618
Income
Work 56 68
Experience
(years)
Level Label Frequency (%)
Employed Unemployed
Gender 0 Male 5024 (71.84) 1610 (52.79)
1 Female 1969 (28.16) 1440 (47.21)
Marriage 0 Else 397 (5.68) 405 (13.28)
1 Married 6596 (94.32) 2645 (86.72)
Education 1 Senior 3558 (50.88) 2235 (73.28)
Middle
School
and below
2 Technical 2222 (31.77) 631 (20.69)
School
& Junior
College
3 Undergraduate 1213 (17.35) 184 (6.03)
and above
Occupation Occ_1 Managers 384 (5.49)
Occ_2 Specialist 1649 (23.58)
Occ_3 Clericals 2191 (31.33)
Occ_4 Business & 1185 (16.95)
Service
Occ_5 Farmers 35 (0.50)
Occ_6 Operators 1272 (18.19)
Occ_7 Army Men 14 (0.20)
Province Pro_1 Tianjin 336 (4.80) 264 (8.66)
Pro_2 Inner 310 (4.43) 85 (2.79)
Mongolia
Pro_3 Jilin 322 (4.60) 121 (3.97)
Pro_4 Heilongjiang 236 (3.37) 164 (5.38)
Pro_5 Shanghai 560 (8.01) 340 (11.15)
Pro_6 Jiangsu 200 (2.86) 100 (3.28)
Pro_7 Zhejiang 597 (8.54) 298 (9.77)
Pro_8 Anhui 362 (5.18) 137 (4.49)
Pro_9 Fujian 782 (11.18) 211 (6.92)
Pro_10 Hubei 421 (6.02) 170 (5.57)
Pro_11 Hunan 437 (6.25) 262 (8.59)
Pro_12 Guangdong 662 (9.47) 130 (4.26)
Pro_13 Guangxi 283 (4.05) 115 (3.77)
Pro_14 Chongqing 429 (6.13) 212 (6.95)
Pro_15 Guizhou 54 (0.77) 31 (1.02)
Pro_16 Yunnan 204 (2.92) 107 (3.51)
Pro_17 Shanxi 228 (3.26) 71 (2.33)
Pro_18 Ningxia 145 (2.07) 50 (1.64)
Comparison Beijing 425 (6.08) 182 (5.97)
Group
TABLE 2
EFFECTS OF PSYCHOLOGY ON CONSUMPTION: ORDERED LOGIT VERSUS ORDERED
PROBIT MODEL (EMPLOYED--6,993; UNEMPLOYED--3,050)
Ordered Logit
Employed (6993)
Mental Accounting Wealth .081 (.031) **
Income .516 (.035) ***
Emotion Anxiety -.071 (.027) ***
Optimism/Pessimism Optimism with .007 (.030)
Social Development
Perception Job Security .116 (.042) **
Demographic Control Gender .020 (.052)
Variable Marital Status -.034 (.099)
Education Level -.022 (.018)
Total-Income .000 (.000)
Age .007 (.006)
Work Experience -.006 (.005)
Dummy Coding Occ_1 (Managers) -.162 (.160)
(Occupation) Occ_2 (Specialist) .006 (.135)
Occ_3 (Clericals) -.045 (.133)
Occ_4 (Business & Service) -.053 (.136)
Occ_5 (Farmers) -.212 (.345)
Occ_6 (Operators) -.189 (.137)
Occ_7 (Army Men) -1.1 (.451) **
Dummy Coding Pro_1 (Tianjin) .109 (.134)
(Province) Pro_2 (Inner Mongolia) -.123 (.135)
Pro_3 (jilin) -.126 (.135)
Pro_4 (Heilongjiang) -.068 (.155)
Pro_5 (Shanghai) .547 (.118) ***
Pro_6 (Jiangsu) .153 (.158)
Pro_7 (Zhejiang) .221 (.116) *
Pro_8 (Anhui) -.003 (.131)
Pro_9 (Fujian) .085 (.110)
Pro_10 (Hubei) .004 (.128)
Pro_11 (Hunan) .123 (.127)
Pro_12 (Guangdong) -.125 (.116)
Pro_13 (Guangxi) .032 (.142)
Pro_14 (Chongqing) .085 (.127)
Pro_15 (Guizhou) .248 (.306)
Pro_16 (Yunnan) -.048 (.166)
Pro_17 (Shanxi) .621 (.155) ***
Pro_18 (Ningxia) .284 (.179)
Ordered Logit
Unemployed (3050)
Mental Accounting Wealth -.107 (.061) *
Income .633 (.065) ***
Emotion Anxiety -.059 (.047)
Optimism/Pessimism Optimism with .129 (.055) **
Social Development
Perception Job Security .001 (.082)
Demographic Control Gender .004 (.089)
Variable Marital Status .324 (.120) ***
Education Level -.024 (.028)
Total-Income .000 (.000)
Age .004 (.010)
Work Experience .003 (.010)
Dummy Coding Occ_1 (Managers)
(Occupation) Occ_2 (Specialist)
Occ_3 (Clericals)
Occ_4 (Business & Service)
Occ_5 (Farmers)
Occ_6 (Operators)
Occ_7 (Army Men)
Dummy Coding Pro_1 (Tianjin) .209 (.194)
(Province) Pro_2 (Inner Mongolia) -.393 (.296)
Pro_3 (jilin) -.349 (.257)
Pro_4 (Heilongjiang) .149 (.280)
Pro_5 (Shanghai) .479 (.185) **
Pro_6 (Jiangsu) .343 (.256)
Pro_7 (Zhejiang) .080 (.200)
Pro_8 (Anhui) .289 (.240)
Pro_9 (Fujian) .231 (.203)
Pro_10 (Hubei) -.081 (.227)
Pro_11 (Hunan) .368 (.206) *
Pro_12 (Guangdong) .087 (.244)
Pro_13 (Guangxi) -.054 (.264)
Pro_14 (Chongqing) .315 (.209)
Pro_15 (Guizhou) -.083 (.785)
Pro_16 (Yunnan) .030 (.261)
Pro_17 (Shanxi) .331 (.310)
Pro_18 (Ningxia) .586 (.416)
Ordered Probit
Employed (6993)
Mental Accounting Wealth .036 (.017) **
Income .271 (.019) ***
Emotion Anxiety -.044 (.015) ***
Optimism/Pessimism Optimism with .003 (.030)
Social Development
Perception Job Security .045 (.023) **
Demographic Control Gender .003 (.030)
Variable Marital Status -.025 (.056)
Education Level -.009 (.011)
Total-Income .000 (.000)
Age .004 (.004)
Work Experience -.004 (.003)
Dummy Coding Occ_1 (Managers) -.084 (.091)
(Occupation) Occ_2 (Specialist) -.003 (.077)
Occ_3 (Clericals) -.013 (.075)
Occ_4 (Business & Service) -.032 (.077)
Occ_5 (Farmers) -.157 (.195)
Occ_6 (Operators) -.096 (.077)
Occ_7 (Army Men) -.629 (.290) **
Dummy Coding Pro_1 (Tianjin) .076 (.079)
(Province) Pro_2 (Inner Mongolia) -.044 (.080)
Pro_3 (jilin) -.032 (.079)
Pro_4 (Heilongjiang) .003 (.088)
Pro_5 (Shanghai) .318 (.069) ***
Pro_6 (Jiangsu) .108 (.091)
Pro_7 (Zhejiang) .140 (.068) **
Pro_8 (Anhui) .010 (.077)
Pro_9 (Fujian) .065 (.065)
Pro_10 (Hubei) .023 (.074)
Pro_11 (Hunan) .075 (.074)
Pro_12 (Guangdong) -.047 (.067)
Pro_13 (Guangxi) .035 (.083)
Pro_14 (Chongqing) .076 (.073)
Pro_15 (Guizhou) .107 (.161)
Pro_16 (Yunnan) .028 (.091)
Pro_17 (Shanxi) .343 (.088) ***
Pro_18 (Ningxia) .152 (.104)
Ordered Probit
Unemployed (3050)
Mental Accounting Wealth -.052 (.033)
Income .325 (.035) ***
Emotion Anxiety -.027 (.027)
Optimism/Pessimism Optimism with .080 (.031) **
Social Development
Perception Job Security -.026 (.043)
Demographic Control Gender .004 (.051)
Variable Marital Status .068 (.038) *
Education Level -.013 (.016)
Total-Income .000 (.000)
Age .002 (.006)
Work Experience .002 (.006)
Dummy Coding Occ_1 (Managers)
(Occupation) Occ_2 (Specialist)
Occ_3 (Clericals)
Occ_4 (Business & Service)
Occ_5 (Farmers)
Occ_6 (Operators)
Occ_7 (Army Men)
Dummy Coding Pro_1 (Tianjin) .103 (.113)
(Province) Pro_2 (Inner Mongolia) -.227 (.174)
Pro_3 (jilin) -.156 (.146)
Pro_4 (Heilongjiang) .130 (.154)
Pro_5 (Shanghai) .258 (.108) **
Pro_6 (Jiangsu) .180 (.147)
Pro_7 (Zhejiang) .047 (.117)
Pro_8 (Anhui) .195 (.140)
Pro_9 (Fujian) .161 (.119)
Pro_10 (Hubei) -.068 (.130)
Pro_11 (Hunan) .196 (.119)
Pro_12 (Guangdong) .095 (.139)
Pro_13 (Guangxi) .008 (.151)
Pro_14 (Chongqing) .192 (.120)
Pro_15 (Guizhou) -.010 (.389)
Pro_16 (Yunnan) .013 (.147)
Pro_17 (Shanxi) .190 (.173)
Pro_18 (Ningxia) .387 (.250)
Notes: For wealth, income and consumption, it is the subjective
change in variable between prior to the crisis and the time of
the survey (1 = not affected by crisis and 5 = very much affected
by crisis). For the psychological variables, it is (1 = decreased
to 5 = increased, and 3 = no change). *, **, and *** denote
statistical significance at 10%, 5% and 1% level, respectively.
TABLE 3
EFFECTS OF PSYCHOLOGY ON CONSUMPTION ON ORDERED LOGIT:
MARGINAL EFFECTS
Scale Category
1 2 3
E U E U E U
Wealth .0054 .0056 .0127 .0148 .0023 .0023
Income .0348 .0331 .0812 .0875 .0145 .0136
Anxiety .0049 .0031 .0114 .0082 .0020 .0013
Optimism .0004 .0073 .0010 .0192 .0002 .0030
Job Security .0078 .0000 .0182 .0001 .0033 .0000
Scale Category
4 5
E U E U
Wealth .0116 .0177 .0042 .0050
Income .0746 .1045 .0269 .0298
Anxiety .0104 .0098 .0038 .0028
Optimism .0009 .0229 .0003 .0065
Job Security .0167 .0001 .0060 .0000
Note: E and U denote, respectively, employed and unemployed.