Impact of seat belt use on driving behavior.
Singh, Harinder ; Thayer, Mark
I. INTRODUCTION
The National Safety Council estimates that the expected reduction in
occupant death rates due to usage of lap seat belts would be 7-8.5
percent (see Peltzman |1975~). In addition, Campbell and Campbell |1988~
estimate that fatalities in the twenty-five states with seat belt laws
were 6.6 percent lower than forecast for these states. This improvement
amounts to approximately 1,300 lives saved. Swan |1984~ reports that
seat belts are negatively correlated with the number of traffic
fatalities. This conclusion is based on a pooled cross-section,
time-series model for Australia and New Zealand. Finally, McEwin |1986~
estimates on the basis of his empirical model that a 100 percent usage
of seat belts would reduce fatalities by 40 percent.
However, a number of studies have pointed out that, contrary to
conventional wisdom, seat belt laws may not reduce the total number of
fatalities. Their argument is that use of the safety belt provides the
driver with an additional sense of security which translates into
relatively more reckless driving. There is a potential for offsetting or
compensating behavior on the part of the driver of the automobile. This
notion is referred to as the "compensating-behavior
hypothesis."
Compensating behavior is justified on both theoretical and empirical
grounds. Blomquist |1986~ finds that compensating behavior is utility
maximizing if an individual's safety effort and exogenous safety
measures (e.g., government regulations) are substitutes in determining
the probability of and loss from an automobile accident.
Peltzman |1975; 1976~ tested the impact of automobile safety regulation on both occupant and non-occupant deaths. He found evidence
from aggregate time-series and cross-section data that occupants'
lives are saved at the expense of pedestrian deaths and a larger number
of nonfatal accidents. Recently, Garbacz |1991a~ tested this hypothesis
using aggregate time-series data for New Zealand. He found that a
mandatory seat belt law, enacted in 1972, was negatively correlated with
the deaths of automobile occupants and positively associated with deaths
of cyclists and pedestrians. In fact, the Garbacz study indicated
complete offsetting in that total deaths showed no relationship to seat
belt use (savings in occupant deaths were just offset by the increase in
non-occupant deaths). In other work Garbacz |1990; 1991b; 1992~ provides
further evidence of offsetting behavior, demonstrating that both
non-occupants and rear-seat passengers are more at risk when seat belt
laws are in effect. A final example of offsetting behavior was provided
in a recent Wall Street Journal article (10 October 1991) that showed
that air bags seem to reduce fatalities, but accidents and other
associated injuries have increased.
One concern in the Garbacz |1991a~ work was the sensitivity of the
results to the "speed variable" (average open-road speed for
the 85th percentile of vehicles). He concluded that this variable could
be endogenous to the estimation process. Thus, the compensating-behavior
hypothesis would imply more risk taking (including speeding) after the
imposition of the seat belt law. In fact, Lave and Weber |1970~ first
suggested the possibility that mandated safety devices might lead to
faster driving, offsetting some or all of the beneficial effect of the
safety device.
In this paper we re-examine the issue of compensating behavior when
individuals use seat belts. Our investigation has a number of
significant departures from previous studies. First, since compensating
behavior is a hypothesis of individual action, we test the hypothesis
using individual-specific observations. The studies discussed above
employed aggregate time-series or cross-section data. At the aggregate
level, the statistical regularities could conceivably be caused by other
confounding factors.
Second, we test the compensating-behavior hypothesis after accounting
for tastes in risks (as manifested by precautionary steps individuals
have taken to reduce everyday risks). The notion of an individual who
wears a seat belt taking more or less risk is obviously tied to his/her
risk preference. For example, Blomquist |1991~ has found that
individuals seem to consider relative risk when making safety equipment
decisions; that is, individuals are not risk incompetent. Testing the
compensating hypothesis at an aggregate level without controlling for
the risk preferences of specific individuals could result in
specification error. One would expect a priori that the
compensating-behavior hypothesis holds for individuals who have a low
regard for various risks. On the other hand, risk averse individuals may
not compensate (for the additional safety provided by a seat belt) by
driving more recklessly. Clearly, tastes for risk are an important
dimension of the compensating behavior hypothesis.
Third, this study employs a more sensitive indicator of compensating
behavior. As discussed above, past studies have analyzed the impact of
safety belts or safety belt laws on the number of fatalities and/or the
number of accidents. We analyze the impact of an individual's seat
belt usage on the number of moving violations (tickets).(1) If seat belt
wearing drivers are taking additional risks, then such behavior will
result in a larger number of moving violations, ceteris paribus.
Finally, our empirical model controls for other individual-specific
variables (besides seat belt use) which may affect driving performance.
These confounding factors include the number of years individuals have
worn seat belts, age, miles driven to work, education level, sex, and
annual income.
The remainder of the paper is organized as follows. In the next
section we present a theoretical model of individual behavior. In
section III the data and the basic empirical model are discussed.
Results are presented in section IV. Concluding remarks and some caveats
are offered in section V.
II. THEORETICAL BASIS
Blomquist |1986~ demonstrated that compensating behavior is utility
maximizing if individual and exogenous safety measures are substitutes
in the production of a specific accident risk level. However, Blomquist
did not address the possibility that individual and exogenous measures
could be combined in a complementary manner (i.e. exogenous safety
measures would enhance individual efforts). In this latter case
compensating behavior cannot be predicted a priori. In this paper the
manner in which individuals combine safety measures, and the consequent
effect on compensating behavior, is taken to be an empirical question.
The model presented herein utilizes the Blomquist framework. Let
e = individual safety measures;
g = exogenous safety measures beyond control of the individual;
P = P(e,g) = probability that an individual is involved in an
automobile accident where probability is influenced by individual
actions (|P.sub.e~ |is less than~ 0, |P.sub.ee~ |is greater than~ 0) and
exogenous factors |P.sub.g~ |is less than~ 0, |P.sub.gg~ |is greater
than~ 0);
L = L(e,g) = loss associated with an accident where loss is
influenced by individual actions (|L.sub.e~ |is less than~ 0, |L.sub.ee~
|is greater than~ 0) and exogenous safety measures (|L.sub.g~ |is less
than~ 0, |L.sub.gg~ |is greater than~ 0);
D = D(e,g) = disutility associated with driver safety (|D.sub.e~ |is
greater than~ 0, |D.sub.ee~ |is greater than~ 0) and exogenous safety
factors (|D.sub.g~ |is greater than~ 0, |D.sub.gg~ |is greater than~ 0).
Disutility may result from the interaction of individual and exogenous
actions (|D.sub.eg~ |is greater than~ 0).
Also note that we have made no assumption concerning the relationship
between e and g in either the production function P or the loss function
L. If |P.sub.eg~ and |L.sub.eg~ are non-negative, then individual and
exogenous actions are substitutes in production (see Blomquist |1986~).
However, if these values are negative, then individuals perceive e and g
as complementary goods.
The individual is assumed to maximize expected utility, constrained
by income (I). Thus
(1) U = P (e,g)|I - D(e,g) - L(e,g)~ + |1 - P(e,g)~ |I - D(e,g)~
or
U = I - D(e,g) - P(e,g)L(e,g).
The individual will take safety measures until the benefits of
additional action (benefits of reduction in expected loss) are just
offset by the additional disutility. Thus, optimal driver safety effort
will conform to
(2) -|D.sub.e~ = |P.sub.e~L + P|L.sub.e~.
The relationship between individual and exogenous safety measures can
be determined by treating equation (2) as an implicit function and using
the implicit function rule to solve for de/dg.
(3) de/dg = (|D.sub.eg~ + |P.sub.eg~L + |P.sub.e~|L.sub.g~ +
|P.sub.g~|L.sub.e~ + P|L.sub.eg~) / (-|D.sub.ee~ - |P.sub.ee~L -
2|P.sub.e~|L.sub.e~ - P|L.sub.ee~)
Following Blomquist |1986~, de/dg |is less than~ 0 if individual and
exogenous actions are assumed to be substitutes in the production and
loss functions. This is the formula for compensating behavior. However,
the sign of de/dg is indeterminate if e and g are assumed to be
complementary in reducing risk and loss. In this case compensating
behavior does not always occur and will depend on the extent that
complementarity produces additional safety that offsets the extra
disutility of any exogenous safety measure.
The manner in which individuals treat individual and exogenous safety
measures is an empirical question. A priori one would expect that
relatively risk averse individuals would demonstrate the least amount of
compensating behavior. That is, exogenous safety measures might not be
offset by reductions in individual carefulness. Likewise, risk
preferrers or risk lovers would be relatively strong candidates for
compensating behavior. In the next section we present the data and
empirical model that allows this hypothesis to be tested.
III. DATA SPECIFICS AND EMPIRICAL MODEL
The data was collected through a mail survey sent to residents in six
San Francisco Bay area counties: Alameda, Contra Costa, Marin, San
Francisco, San Mateo and Santa Clara. Potential respondents were
selected at random from a master data tape of homeowners. We employed
the Dillman |1978~ Total Design Method (TDM) in order to maximize the
response rate. This procedure requires complete personalization of the
correspondence and multiple attempts to convince respondents to
participate in the survey.
Approximately 3,000 surveys were distributed and 1,092 surveys were
eventually returned. The response rate was 37.13 percent. This is
considered a satisfactory response rate for a mail survey that was
extensive, provided no compensation for respondents, and did not utilize
all of the TDM approach (we did not follow our mail correspondence with
a telephone call due to limited funds).(2)
The survey obtained information concerning seat belt usage, years of
seat belt use, number of moving violations over the previous three
years, risk preferences, and several control variables including income,
sex, age, and education. A detailed definition of each variable is
provided in Table I.
Four variables require further discussion. First, the dependent
variable in the empirical analysis is the number of moving violations
the respondent has received in the previous three years.(3) Moving
violations include exceeding posted speed limits, failure to stop at
stop sign or traffic light, reckless driving, etc. Second, the seat belt
use variable is used to test the compensating-behavior hypothesis by
examining its relationship to the number of moving violations. Third,
the independent variable for years of seat belt use allows a
determination of the magnitude of learning concerning compensating
behavior. Finally, the risk index variable, formed by summing the
responses to questions concerning six different revealed preferences
about risk behavior (presence of smoke alarm, burglar alarm, car alarm,
earthquake home insurance, emergency equipment, and emergency food
items), is used to measure relative risk aversion.(4) That is, if the
individual's risk index is close to the maximum value (6) then
he/she is considered relatively risk averse. On the other hand, if the
individuals' risk index is near zero then this individual is
considered a risk lover since relatively few precautions are taken.
TABLE I
Variable Definitions
Number of Tickets Number of traffic citations for moving
violations in the past three years.
Moving violations include speeding,
red light, stop sign, reckless driving
or "other".
Seat Belt Use Discrete variable for seat belt use:
(0) no seat belt use; (1) yes, but
rarely; (2) yes, some of the time; (3)
yes, all the time.
Years of Seat Belt Use Number of years individual has worn a
seat belt.
Education Discrete variable for education
completed: (1) 0-5 grades; (2) 6-8
grades; (3) 8-11 grades; (4) finished
high school; (5) trade school; (6)
some college; (7) college degree; (8)
some graduate work; (9) advanced
college degree/professional degree.
Sex Discrete variable: (0) female; (1)
male.
Age Number of years.
Distance to Work Distance to work site in miles.
Income Discrete variable for annual income:
(1) less than $5,000; (2)
$5,000-$9,999; (3) $10,000-$19,999;
(4) $20,000-$29,999; (5)
$30,000-$39,999; (6) $40,000-$49,999;
(7) $50,000-$59,999; (8)
$60,000-$79,999; (9) $80,000-$99,999;
(10) over $100,000.
Risk Index Sum of responses to six yes/no
questions concerning revealed
preferences about risk. Categories
were smoke alarm, burglar alarm, car
alarm, earthquake insurance, emergency
equipment, and emergency supplies. In
all cases "zero" indicates no whereas
"one" indicates yes.
Underage Children Number of children under the age of
eighteen.
In the empirical analysis we define the risk averse group as those
individuals with risk index values of 5 or 6. Those individuals that
prefer risk (risk lovers) have index values of 0, 1 or 2. The remaining
individuals are considered risk neutral. These division values are
arbitrary. However, the significance pattern of the results remains
basically the same if other groupings are used. For instance, we used
six categories, conforming to the values one through six. The basic
results were unchanged. However, the problem with six categories is that
risk index values of one and six have only thirteen and thirty
observations, respectively. Consequently, the three-tier demarcation
defined above is preferred because of a relatively more symmetric
distribution of the number of observations in each category.
Descriptive statistics for each of the variables used in the
empirical analysis are presented in Table II. The data are presented for
each of the three risk preference groups defined above. As is
illustrated, risk lovers have received more moving violations than the
other groups. In addition, risk lovers use seat belts less often, have
used seat belts for a shorter length of time, have lower incomes, and
are less educated and younger than the other groups.
It should also be noted that our sample consists of resident owners
of single-family homes. Thus, the sample is not necessarily
representative of the general population. In particular, our sample is
relatively older, better educated, and has greater income than the
general population. For example, the sample contains only three
respondents less than the age of 25. Since the age group 16-24 generally
comprises approximately 20 percent of the drivers, our sample is not
representative. Thus, our sample likely receives fewer moving violations
and wears seat belts more frequently than the general population. In
other words we expect our sample to be relatively more risk averse.
IV. EMPIRICAL RESULTS
The empirical analysis is based on 690 complete data points. The
basic model attempts to explain the number of moving violations (Number
of Tickets) as a function of the independent variables Seat Belt Use,
Years of Seat Belt Use, Risk Index, Education, Income, Age, Distance to
Work, Sex, and Number of Underage Children. The model is estimated via
ordinary least squares.
The results for the model in which all risk groups are pooled are
presented in Table III. A dummy variable is used to define the separate
groups. This variable, interacted with seat belt use, allows
interpretation of the relationship between seat belt use and number of
tickets by group. Note also that the constant term is suppressed.
A number of aspects of the estimated equation are noteworthy. First,
the overall significance of the regression is relatively low. This is
not uncommon with individual-level data. Further, this problem is
alleviated somewhat in later estimation procedures.
Second, the results are reported after White's |1980~
heteroscedastic correction. The Park-Glejser test statistic for
heteroscedasticity (t-value = 17.24) indicated that White's
correction was needed.
Third, the control variables (Income, Sex, Education, Distance to
Work, and Number of Underage Children) are generally not significantly
different from zero. The exception is the Age variable that shows that
age reduces ticket frequency; that is, older respondents receive fewer
tickets. We also experimented with other functional forms for the
control variables. For instance, we added an Age Squared term to the
equation. However, performance of the control variables was unchanged;
the Age variable continued to be negative and significant whereas the
Age Squared variable and the other control variables were not
significantly different from zero.
Fourth, the impact of seat belt use varies according to the risk
index. Seat belt use is positive and significant for risk lovers (Risk
Index of two or less). This result is indicative of strong compensating
behavior; that is, seat belt use is strongly related to an increase in
the number of moving violations for members of this group. Compensating
behavior is also demonstrated to a lesser extent in the risk TABULAR
DATA OMITTED neutral group, although the estimated coefficient is
significantly different from zero only at the 10 percent level. The
behavior of the risk averse group is counter to these results.
Compensating behavior does not occur among members of this group. In
fact, the opposite is true. The seat belt wearing members of the risk
averse respondents receive fewer moving violations than those that do
not wear a seat belt. This is evidence that risk averse individuals
combine personal and exogenous safety measures in a complementary
fashion.
Finally, the Years of Seat Belt Use variable is negative and
significantly different from zero. Thus, the number of moving violations
declines in all groups the longer one wears a seat belt. This is an
indication of learning, which results in less compensating behavior over
time.
TABLE III
Impact of Seat Belt Use on Number of Tickets Pooled Estimates
Explanatory
Variables Coefficients t-statistics
Risk Lover Group -.005 -.017
Risk Lover*Seat Belt Use .327 4.28
Risk Neutral Group .487 1.64
Risk Neutral*Seat Belt Use .136 1.62
Risk Averse Group 3.68 2.23
Risk Averse*Seat Belt Use -.935 -1.69
Years of Seat Belt Use -.011 -3.65
Education .0003 .02
Income .007 .40
Sex .048 .83
Age -.011 -3.78
Distance to Work -.0005 -.57
Underage Children .012 .47
R-Square .08
Number of Observations 690
In Table IV an alternative empirical specification is presented. We
performed an F-test to determine the efficacy of including the three
groups, distinguished by the risk index, in a single equation. The
F-statistic for the unrestricted specification (three separate
equations) compared to the restricted specification (single equation) is
2.20 versus the critical value of 2.10 (at 1 percent level). This
implies that the three equations may be analytically distinct. Thus, in
Table IV we present three separate estimated equations.
As in the previous pooled model all results are reported with
White's heteroscedastic correction. The test statistics for the
three equations (risk lovers, risk neutral, risk averse) are 2.16, 2.49,
and 2.47, respectively. All exceed the 5 percent significance level,
indicating that White's correction is needed.
As is illustrated, the overall significance of the individual
regressions for the risk lover and risk averse groups are markedly
improved. However, the conclusions drawn above for the single-equation
model generally remain in effect. The control variables continue to
perform poorly. Moreover, the pattern for Seat Belt Use and Years
Wearing Seat Belt remains the same. The risk lover group demonstrates
strong compensating behavior whereas the risk TABULAR DATA OMITTED
averse group does not compensate. Learning (illustrated by the Years of
Seat Belt Use variable) continues to be significantly different from
zero for the risk neutral and risk averse groups. However, this variable
is not significant among the risk lover group, implying that this group
shows minimal learning. Thus, compensating behavior is not offset over
time in this group.
Since the control variables do not perform as expected, we eliminated
them as a final test of the stability of the estimated coefficients. Our
conclusions regarding Seat Belt Use and Years Wearing Seat Belt are
unchanged. The estimated coefficients (t-statistics in parentheses) on
Seat Belt Use were .29 (3.71), .10 (1.22), and -.89 (-1.61) for the
three groups (risk lovers, risk neutral, risk averse), respectively. In
addition, the pattern of learning established above remains the same.
V. CONCLUDING REMARKS AND CAVEATS
Models based on individual-specific survey data are estimated to
investigate the relationship between seat belt usage and the number of
citations for moving violations. The analysis incorporates risk tastes
of individuals as revealed by the degree of precaution exhibited against
everyday risks. The results indicate that the compensating-behavior
hypothesis applies only to those individuals who are not strongly risk
averse. Conversely, seat belt use is associated with relatively fewer
moving violations for the individuals who exhibit risk aversion. Taken
together, the results imply that individual risk preferences are an
important dimension which should be considered when testing the
compensating-behavior hypothesis. Aggregate models which do not make
this distinction may be suspect.
Three caveats about our analysis are in order. First, the
investigation is based on survey data which is generally less preferred
than revealed preference data. However, note that respondents had no
incentive to misrepresent preferences since they were assured of
complete anonymity. Second, our sample is not representative of the
general population since it consists entirely of resident owners of
single-family homes. Further analysis with other segments of the
population is needed to verify our results. Third, proxy variables for
evaluating risk preferences may not have accurately discerned the
underlying risk state of each individual. The risk preference
demarcations are developed on the basis of revealed choices regarding
everyday exposure to different types of risks such as theft, fire and
earthquakes. All these risky events entail potential for bodily harm to
self and/or family. Since the risk of an automobile accident has a
similar dimension, one would expect consistent risk behavior across
similar risks. However, further tests of the compensating-behavior
hypothesis based on individual-specific analysis and risk preferences
developed from other data sources need to be attempted.
1. We do not presume any relationship between the number of moving
violations and traffic accidents and/or fatalities. This relationship is
currently poorly understood and should be the focus of future research.
2. Dillman |1978~ routinely gets in excess of 70 percent response
rates for mail surveys. However, these are obtained for surveys that (1)
target specific groups with an interest in the primary issue and (2)
utilize the entire Total Design Method, which requires multiple
correspondence procedures, including telephone follow-up. Our response
rate is considered satisfactory in this context.
3. We utilize the previous three-year time period for two reasons.
First, this is the usual time period that insurance companies use when
evaluating insurance risk and premiums. Thus, respondents are familiar
with this measure and will likely respond with little error. Second,
most individuals do not receive moving violations yearly (approximately
65 percent of the sample had none in the previous three years) so using
three years generates the necessary variation in the dependent variable.
However, using the previous three-year period may cause some
inconsistency with seat belt use since the latter may not be stable over
the previous three years.
4. Blomquist |1991~ and McCarthy |1986~ examine the relationship
between risk and seat belt usage. Thus, they concentrate on risk as it
relates to the driving trips (road conditions, length of trip, etc).
However, we are not trying to predict seat belt usage. Rather, we
concentrate on the individual's general notion of risk as portrayed
in response to a set of everyday risks.
REFERENCES
Blomquist, G. "A Utility Maximization Model of Driver Traffic
Safety Behavior." Accident Analysis and Prevention 18 (5), 1986,
371-75.
-----. "Motorist Use of Safety Equipment: Expected Benefits or
Risk Incompetence?" Journal of Risk and Uncertainty 4(2), 1991,
135-52.
Campbell, B., and F. Campbell. "Injury Reduction and Belt Use
Associated with Occupant Restraint Laws," in Preventing Automobile
Injury: New Findings from Evaluation Research, edited by J. Graham.
Dover, Massachusetts: Auburn House Publishing Company, 1988, 24-50.
Dillman, D. Mail and Telephone Surveys: The Total Design Method. New
York: John Wiley and Sons, 1978.
Garbacz, Christopher. "Estimating Seat Belt Effectiveness with
Seat Belt Usage Data from the Centers for Disease Control."
Economic Letters 34(1), 1990, 83-88.
-----. "Impact of the New Zealand Seat Belt Law." Economic
Inquiry, April, 1991a, 310-16.
-----. "Are Rear Seat Passengers and Non-Occupants More at Risk
Due to Seat Belt Laws?" Unpublished manuscript, University of
Missouri-Rolla, 1991b.
-----. "More Evidence on the Effectiveness of Seat Belt
Laws." Applied Economics, forthcoming, 1992.
Lave, L., and W. Weber. "A Benefit-Cost Analysis of Auto Safety
Features." Applied Economics 4(1), 1970, 265-75.
McCarthy, P. "Seat Belt Usage Rates: A Test of Peltzman's
Hypothesis." Accident Analysis and Prevention 18(5), 1986, 425-38.
McEwin, R. No Fault and Motor Vehicle Accidents, Working Paper D105,
Center for Policy Studies, Monash University, September, 1986, 1-30.
Peltzman, Sam. "The Effect of Automobile Safety
Regulations." Journal of Political Economy, August 1975, 677-726.
-----. "The Regulation of Automobile Safety," in Auto
Safety Regulation: The Cure or the Problem?, edited by H. G. Manne and
R. L. Miller. Glen Ridge, N.J.: Thomas Horton, 1976, 1-52.
Swan, P. "The Economics of Law: Economic Imperialism in
Negligence Law, No Fault Insurance, Occupational Licensing and
Criminology." Australian Economic Review, 3rd Quarter 1984, 92-108.
White, Halbert. "A Heteroscedasticity-Consistent Covariance
Matrix and A Direct Test for Heteroscedasticity." Econometrica 48,
May 1980, 821-46.