Photogrammetric mapping based on UAV imagery.
Berteska, Tautvydas ; Ruzgiene, Birute
Introduction
During a number of recent years, the use of unmanned aerial
vehicles (UAVs) has increased significantly. Such activity can be
ascribed to technical developments of electronic components and the
possibility of their integration into remotely controlled aircrafts
(Rock et al. 2011).
The term UAV is commonly used in the Artificial Intelligence,
Computer Science and Robotics, as well as in the Photogrammetry and
Remote Sensing communities. The new term UAV Photogrammetry describes a
photogrammetric measurement platform, which operates remotely
controlled, semiautonomous or fully autonomous without a pilot inside
the vehicle. UAV photogrammetry opens various new applications in the
close range domain, combining aerial and terrestrial photogrammetry. It
is a new near real time application and low-cost alternative to the
classical manned aerial photogrammetry (Eisenbeifi 2009).
Recently, digital aerial cameras have been used for image
acquisition and nearly fully changed film based aerial cameras. The
production of orthophoto and digital elevation models (DEMs) became
completely digital, mostly automatic and with short response of time.
These are the major factors ensuring success in gaining cartographic
data from digital images.
The use of professional digital photogrammetric cameras
demonstrates the benefits of digital image recording for terrain data
generation by image matching. Elevation data from image matching are
important for deriving cartographic data such as 3D building models and
landscape visualization, roof shapes, canopy models, etc., as well as in
generation and updating digital terrain models (Haala et al. 2010).
Digital photogrammetry methods are applied for generation of
orthophotographic maps. For this purpose, needs to generate a digital
terrain model of the Earth's surface and digital aerial image
geometry correction, which removes geometric distortions due to tilt of
the camera, the central projection and terrain effects. It is extremely
important, that the digital terrain model of the Earth's surface
would be created in the required quality for geometric transformation of
digital images (Ruzgiene 2010).
The goal of investigations is to evaluate the quality of DEM
generated using UAV photo images and to demonstrate application
possibilities for cartographic data collection.
1. UAV performance and technical means
The fixed-wing UAV platform (model EPP-FPV) used for the image data
acquisition is shown in Figure 1.
The EPP-FPV foam construction with a wingspan of 1.8 metres and a
take-off weight around 4 kg makes it a robust, low cost, low weight UAV
platform. The UAV has a cruising speed of about 14 m/s and is able to
fly up to 30 minutes on low wind conditions. Therefore, it can cover a
flight distance of roughly 30 km after subtracting some reserves for
climbing and landing. Flight altitude can be very diversely, but is
better of 150 m to 300 m, obviously of needed image resolution.
The platform guidance can be fully automatic, semi-manual or
manual. Take-off is automatic or manual, landing on flat surface is
automatic or manual. Autopilot Ardu Pilot Mega (APM) (see Fig. 2) is
used for automatic guidance. It is based on the Arduino embedded system.
Installed flight plan software Mission Planner allows a rather simple
and fast guidance of the automated flight.
The UAV can be commanded by a PC based ground station, which is
connected via RF link (Haala et al. 2011). Automatic flight needs a
three axis gyroscope, three axis acceleration meter, pressure sensor,
air velocity sensor, 10 Hz GPS module, battery voltage sensor, 4 Mb
memory chip integrated flight parameter storage and a telemetry module
(Rudinskas 2011).
Imagery has been taken using high-resolution consumer camera Canon
S100 (Fig. 3). Camera's nominal focal length is of 5.2 mm. Some
camera features: a 1/1.7" CCD sensor, incorporated with 12,1 Mega
pixels; integrated GPS module, that allows determining geodetic
coordinates of each image projection centre during the flight. The
maximum frame size of image is 4000 x 3000 pixels.
The camera was mounted under the airframe. Prior to a flight,
camera is turn on, focus is determined as well as the focal length. The
Ardu Pilot can operate not only UAV, but also other equipment located on
the platform. The autopilot system is managing camera exposition;
therefore, image collection is fully computer assisted. Obtained
high-resolution images can be used for processing in a photogrammetry
application (Suziedelyte-Visockiene, Brucas 2009).
2. Image data acquisition
The universal workflow is accepted for image data acquisition:
--Determination of project parameters (PP).
--Flight planning (FP).
--Autonomous photogrammetric flight (APF).
--Quality check of the data (QCD).
--UAV Block Triangulation (UAV BT).
--Generation of Digital Surface Model (DSM), Orthophoto, 3D Model
(DO3D).
[FIGURE 1 OMITTED]
[FIGURE 2 OMITTED]
[FIGURE 3 OMITTED]
During one autonomous photogrammetric flight, the UAV platform with
the mounted camera can receive a collection of hundreds of images. The
autonomous flight used the autopilot board and the PC software Mission
Planer. This application uses a map (e.g., Google Earth), which is
required for planning of a flight and signifying waypoints. It helps
controlling autonomous triggering of images and autonomous takeoff and
landing. The producer proposed the following Mission Planer feature:
--Point-and-click waypoint entry, using Google Maps.
--Select mission commands from drop-down menu.
--Download mission log files and analyse them.
--Configure APM settings for airframe.
--Interface with a PC flight simulator to create a full
hardware-in-the-loop UAV simulator.
--See the output from APM's serial terminal.
[FIGURE 4 OMITTED]
[FIGURE 5 OMITTED]
Important features of the quality of the data checking is image
resolution, clarity and tilts. After landing, collected images are
checked; camera SD card is inserted into a PC for loading of images; if
required, a flight is repeat. All jobs proceed in real time on the
field.
Experimental flight using UAV EPP-FPV with equipped camera Canon
S100 was executed by employers from Space Science and Technology
Institute (SSTI), Lithuania. Especially high requirements for flight
realisation did not apply. The aim was to conduct a short flight and
collect imagery. Planning of the flight depended on good weather, still
wind and optimal altitude.
UAV flight was executed over the area of Naujakiemis, a region of
Vilnius. The flight area (about 80 ha) was chosen purely accidentally.
No different geomorphologic landforms were especially chosen as the
focus was on the use of photogrammetric means for data capture. The site
was partly flatlands with the mean altitude of approx. 125 metres.
After the manual take-off and check of the fixed-wing parameters,
the flight mode was changed to the automated flying mode. When UAV
take-off achieved the selected high, it began taking pictures. The UAV
flight was controlled using the telemetry module; therefore, the density
of waypoints was major near the telemetry module (Fig. 4). The flight
path did not seem standard (not usual). The flight strips were generated
as polygons of path and involved six polygons with gained 184 imageries.
The flights were performed at a height of approx. 150 m above the
ground in order to capture images at a GSD (GSD = pixel size x H/c,
H-flying height, camera focal length c = 35 mm, pixel size = 3 [micro]m)
of up to 10 cm.
3. Photogrammetric processing of images
Most software packages can process UAV images. UAV Block
Triangulation--images oriented and generated by the navigation unit of
the UAV, leads to a reduction of the number of control points required
for the orientation. In terms of DSM, Orthophoto and 3D Model,
commercial software packages and existing in house-developed tools are
used. Photogrammetric processing software categorizes them into three
classes based on their capability to process aerial, terrestrial and a
combination of aerial and terrestrial data. Needs evaluation a selected
software packages for UAV data processing and usage in applications
(Eisenbeifi 2009).
Image pair has been selected for experimental investigations (Fig.
5).
The photogrammetric software package version of LISA has been used
for image processing (Linder 2006). The package is divided into modules:
LISA BASIC, FOTO, BLUH and FFSAT. The experiment used LISA BASIC and
FOTO. LISA BASIC module is raster GIS software with numerous
possibilities for image processing, terrain modelling, etc. LISA FOTO is
the extension of LISA BASIC--a small digital photogrammetric
workstation. The software package is of versions with slightly reduced
functionality: the maximum size per image is limited to 10 MB, only grey
scale (no colour) images can be processed. No tools to create and handle
a data base for geocoded images are available.
The first step of preparatory works is dedicated to changing of
image format to make it suitable for LISA FOTO and saving it as 8-bit
greyscale photos. The following step is project definition using
appropriate parameters (coordinates range, pixel size, etc.).
The ground control points (GCP) for exterior image orientation have
been selected and coordinates defined interactively from the Internet
using www. maps.lt/. Such approach was chosen because of minimal time
required, no cost and not measuring on the field. GCPs was picked for
features (e.g. base of electricity poles, well covers, building corners,
etc.) that can be identified in images (Fig. 6).
For getting the best results for exterior image orientation, and
because images from UAV are significantly under tilt, as many ground
control points as possible are required (15 points were used). Accuracy
of ground control point coordinates obtained from ortho-photo map meets
the requirements of mapping at a scale up to 1: 10 000 (resolution of
raster image is 0.5 m).
The results from image exterior orientation are presented in Figs 7
and 8.
The maximal residual in x and y coordinates for left image
orientation is 0.073 mm referring to the image and the standard
deviation is 0.055 mm; and for the right image--0.158 mm and 0.084 mm,
respectively. Image resolution is 180 dpi (141.1 [micro]m), received
residuals after exterior orientation are approx. of half a pixel.
Fig. 9 shows generated ortho-photo with overplayed contour lines
(interval 5 m). The ortho-photo image covers about 35 000 [m.sup.2]
area.
[FIGURE 6 OMITTED]
[FIGURE 7 OMITTED]
[FIGURE 8 OMITTED]
[FIGURE 9 OMITTED]
[FIGURE 10 OMITTED]
[FIGURE 11 OMITTED]
4. DEM evaluation
Digital terrain model (DTM) or digital elevation model (DEM)
contains height values of terrain and needs for evaluation getting
qualitative mapping product from images. DTM quality control involves
interior and exterior accuracy. Interior accuracy can be defined by
stereo measurements. Exterior accuracy--comparison created DTM's
terrain point elevation with data from geodetic or GPS measurements.
The DEM can be improved when the measured height errors (dh) are
determined and used as corrections (Norvelle 1996) (Fig. 10).
The errors of height in DTM are calculated using the following
formula:
dh [approximately equal to] dx h/b, (1)
where dx - parallax between two images;
h - point height in DEM, h = [Z.sub.01] - [Z.sub.DEM];
[Z.sub.01] - elevation of left image projection centre;
[Z.sub.DEM] - elevation of DEM point;
b - photo base.
Generated DEM (one dataset) from UAV images has been checked using
the methodology described above.
Fig. 11 shows selected points for errors of heights calculation.
Automatically from generated DTM, 3D points where imported regarding the
measured 2D points coordinates.
DEM evaluation results are presented in Fig. 12. Maximal height
error dh is 0.55 m. Generated terrain model should be corrected
regarding determined height errors.
Conclusions
UAV Photogrammetry provides data used for image processing.
Autopilot system guarantees correct flight, camera triggered
auto-control. Geodetic coordinates of each image projection centre are
available.
UAV Photogrammetry is a very promising technology that needs to be
better investigated.
[FIGURE 12 OMITTED]
The application of digital photogrammetric workstation Lisa is
partially functional; therefore, it needs spatial software for UAV image
processing and cartographic data collection.
Evaluation of DEM, generated from UAV images, demonstrates
relevancy of digital elevation model correction aiming for a high
accurate mapping product.
It can be stated, that UAV data is suitable for creation of 3D
models of an area and meets the requirements for large-scale topography
and GIS needs.
doi:10.3846/20296991.2013.859781
Caption: Fig. 1. Unmanned aerial vehicle used as the platform for
acquisition of images
Caption: Fig. 2. Ardu Pilot Mega installation in UAV EPP-FPV
Caption: Fig. 3. Consumer camera Canon S100 mounted at UAV
Caption: Fig. 4. Autonomous flight plan and area in Google Earth
application
Caption: Fig. 5. Stereo pair (left and right) selected for
photogrammetric image processing
Caption: Fig. 6. Fragment of ground control point distribution on
the test area
Caption: Fig. 7. Fragment of left image exterior orientation
results
Caption: Fig. 8. Results of right image exterior orientation
Caption: Fig. 9. Ortho-photo with overlaid contour lines
Caption: Fig. 10. Principle diagram for checking of digital
elevation models
Caption: Fig. 11. Selected points for DEM evaluation
Caption: Fig. 12. Determined DEM height points error
Received 06 June 2013; accepted 09 December 2013
References
Eisenbeiss, H. 2009. UAV photogrammetry. Diss. ETH No.18515,
Institute of Geodesy and Photogrammetry, Zurich, Switzerland,
Mitteilungen Nr. 105. 235 p.
Haala, N.; Cramer, M.; Weimer, F.; Trittler, M. 2011. Performance
test on UAV-based photogrammetric data collection, in International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. 38-1/C22. Zurich, Switzerland, 1-6.
Haala, N.; Hastedt, H.; Wolf, K.; Ressl, C.; Baltrusch, S. 2010.
Digital photogrammetric camera evaluation--generation of digital
elevation models, PFG 2010(2): 99-115.
Linder, W. 2009. Digital photogrammetry. Berlin, Heidelberg:
Springer-Verlag. 220 p. http://dx.doi.org/10.1007/978-3-540-92725-9
Norvelle, F. R. 1996. Using iterative orthophoto refinements to
generate and correct digital elevation models, in Digital
Photogrammetry: an addendum to the manual of photogrammetry. ASPRS,
151-155. ISBN 1-57083-037-1.
Rock, G.; Ries, J. B.; Udelhoven, T. 2011. Sensitivity analysis of
UAV-photogrammetry for creating digital elevation models (DEM), in
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 38-1/ C22: 69-73.
Rudinskas, D. 2011. Bepilocii} orlaivii} skrydiio parametria
matavimi} duomeni} perdavimo saugos metodikos sukurimas. Daktaro
disertacija. Vilniaus Gedimino technikos universitetas. Vilnius:
Technika. 85 p.
Ruzgiene, B. 2010. Skaitmeninio reljefo modelio kurimo metodai ir
tikslumo tyrimas, taikant skaitmenines fotogrametrijos technology,
Geodezija ir kartografija [Geodesy and Cartography] 36(2): 57-62.
Suziedelyte-Visockiene, J.; Brucas, D. 2009. Digital photogrammetry
for building measurements and reverse-engineering, Geodezija ir
kartografija [Geodesy and Cartography] 35(2): 61-65.
Tautvydas Berteska (1), Birute Ruzgiene (2)
Vilnius Gediminas Technical University, Sauletekio al. 11, 10223
Vilnius, Lithuania
E-mails: (1) tautvydas.berteska@stud.vgtu.lt (corresponding
author); (2) birute.ruzgiene@vgtu.lt
Tautvydas BERTESKA. Master's degree student. Vilnius Gediminas
Technical University, Faculty of Environmental Engineering, Sauletekio
al. 11, LT-10223 Vilnius, Lithuania. Ph +37062032605, e-mail:
tautvydas@stud.vgtu.lt.
Research interests: GIS, 3D photogrammetric modelling.
Birute RUZGIENE. Associate Professor, Doctor. Vilnius Gediminas
Technical University, Dept of Geodesy and Cadastre, Sauletekio al. 11,
10223 Vilnius, Lithuania. Ph +370 5 2744703, e-mail:
birute.ruzgiene@vgtu.lt.
Research interests: digital photogrammetric mapping, image
interpretation, features extraction from remote sensing data.