摘要:Collocation has been widely applied in geodesy for estimating the gravity field of the Earth both locally and globally. Particularly, this is the standard geodetic method used to combine all the available data to get an integrated estimate of any functional of the anomalous potential T. The key point of the method is the definition of proper covariance functions of the data. Covariance function models have been proposed by many authors together with the related software. In this paper a new method for finding suitable covariance models has been devised. The covariance fitting problem is reduced to an optimization problem in Linear Programming and solved by using the Simplex Method. The procedure has been implemented in a FORTRAN95 software and has been tested on simulated and real data sets. These first tests proved that the proposed method is a reliable tool for estimating proper covariance function models to be used in the collocation procedure.
其他摘要:Collocation has been widely applied in geodesy for estimating the gravity field of the Earth both locally and globally. Particularly, this is the standard geodetic method used to combine all the available data to get an integrated estimate of any functional of the anomalous potential T. The key point of the method is the definition of proper covariance functions of the data. Covariance function models have been proposed by many authors together with the related software. In this paper a new method for finding suitable covariance models has been devised. The covariance fitting problem is reduced to an optimization problem in Linear Programming and solved by using the Simplex Method. The procedure has been implemented in a FORTRAN95 software and has been tested on simulated and real data sets. These first tests proved that the proposed method is a reliable tool for estimating proper covariance function models to be used in the collocation procedure.
关键词:Local Disturbing Potential; Data Integration; Collocation; Covariance Functions; Linear Programming; Simplex Method