首页    期刊浏览 2025年02月24日 星期一
登录注册

文章基本信息

  • 标题:Comparative analysis of genetic crossover operators in knapsack problem
  • 本地全文:下载
  • 作者:D Hakimi ; D.O. Oyewola ; Y Yahaya
  • 期刊名称:Journal of Applied Sciences and Environmental Management
  • 印刷版ISSN:1119-8362
  • 出版年度:2016
  • 卷号:20
  • 期号:3
  • 页码:593-596
  • 出版社:Department of Pure & Industrial Chemistry, University of Port Harcourt
  • 摘要:The Genetic Algorithm (GA) is an evolutionary algorithms and technique based on natural selections of individuals called chromosomes. In this paper, a method for solving Knapsack problem via GA (Genetic Algorithm) is presented. We compared six different crossovers: Crossover single point, Crossover Two point, Crossover Scattered, Crossover Heuristic, Crossover Arithmetic and Crossover Intermediate. Three different dimensions of knapsack problems are used to test the convergence of knapsack problem. Based on our experimental results, two point crossovers (TP) emerged the best result to solve knapsack problem. Keywords: Genetic Algorithm, Crossover, Heuristic, Arithmetic, Intermediate, Evolutionary Algorithm
  • 关键词:Genetic Algorithm; Crossover; Heuristic; Arithmetic; Intermediate; Evolutionary Algorithm
国家哲学社会科学文献中心版权所有