首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Support Vector Machines as tools for mortality graduation
  • 本地全文:下载
  • 作者:Anastasia Kostaki ; Javier M. Moguerza ; Alberto Olivares
  • 期刊名称:Canadian Studies in Population
  • 印刷版ISSN:1927-629X
  • 出版年度:2012
  • 卷号:38
  • 期号:3-4
  • 页码:37-58
  • 语种:English
  • 出版社:Population Research Laboratory, University of Alberta
  • 摘要:A topic of interest in demographic and biostatistical analysis as well as in actuarial practice , is the graduation of the age-specific mortality pattern. A classical graduation technique is to fit parametric models. Recently, particular emphasis has been given to graduation using nonparametric techniques. Support Vector Machines (SVM) is an innovative methodology that could be utilized for mortality graduation purposes. This paper evaluates SVM techniques as tools for graduating mortality rates. We apply SVM to empirical death rates from a variety of populations and time periods. For comparison, we also apply standard graduation techniques to the same data.
  • 关键词:mortality pattern ;graduation techniques ;support vector machines ;kernel regression estimators
国家哲学社会科学文献中心版权所有