首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A study on least square fit for outlier detection
  • 本地全文:下载
  • 作者:T.Jagadeeswari ; H.Venkateswara Reddy
  • 期刊名称:International Journal of Engineering and Computer Science
  • 印刷版ISSN:2319-7242
  • 出版年度:2016
  • 卷号:5
  • 期号:7
  • 页码:17278-17281
  • DOI:10.18535/ijecs/v5i7.17
  • 出版社:IJECS
  • 摘要:Data mining is the procedure of mining knowledge from data. This is extensively studied field for research area, wheremost of the work emphasized over knowledge discovery. Outlier detection is an important task in data mining and it has many realtime applications . In most of the applications data contains unwanted and unrelated data. Finding and removing anomalous data isvery important and there by improve the quality and accuracy. The outliers are pinpoint or group that depends on data andapplications. This paper focus on outlier concept, taxonomy and outlier detection using least square fit
  • 关键词:outlier detection ; outlier
国家哲学社会科学文献中心版权所有