首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:A Survey on Prediction of Brain Hemorrhage Using Various Techniques
  • 本地全文:下载
  • 作者:C. Dheeba ; S. Vidhya
  • 期刊名称:Indian Journal of Innovations and Developments
  • 印刷版ISSN:2277-5382
  • 电子版ISSN:2277-5390
  • 出版年度:2016
  • 卷号:5
  • 期号:6
  • 页码:1-3
  • 语种:English
  • 出版社:Indian Society for Education and Environment
  • 摘要:Objectives : The main objective of this work is to predict Subarachnoid haemorrhage (SAH) using machine learning techniques and analyzing the classification performance of various existing machine learning algorithms. Methods : Diagnosing theSubarachnoid haemorrhage can be done efficiently by various machine learning techniques. Purpose of using Machine learning technique is to focus on factors that influence the prediction performance. Findings : Subarachnoid haemorrhage is a stroke which is recognised by the occurrence of blood in subarachnoid space. Diagnosis of such potential disease becomes more important in the medical research area. Most widely used data mining methods for prediction tasks are decision rules, naïve Bayesian classifiers, support vector machines, Bayesian networks, and nearest neighbors. Some of the methods namely boosting, bagging and genetic algorithms have limited usage in the prediction. Application/Improvements : The finding of this work shows that random forest classifier provides effective classification result than other machine learning techniques.
  • 其他摘要:Objectives : The main objective of this work is to predict Subarachnoid haemorrhage (SAH) using machine learning techniques and analyzing the classification performance of various existing machine learning algorithms. Methods : Diagnosing theSubarachnoid haemorrhage can be done efficiently by various machine learning techniques. Purpose of using Machine learning technique is to focus on factors that influence the prediction performance. Findings : Subarachnoid haemorrhage is a stroke which is recognised by the occurrence of blood in subarachnoid space. Diagnosis of such potential disease becomes more important in the medical research area. Most widely used data mining methods for prediction tasks are decision rules, naïve Bayesian classifiers, support vector machines, Bayesian networks, and nearest neighbors. Some of the methods namely boosting, bagging and genetic algorithms have limited usage in the prediction. Application/Improvements : The finding of this work shows that random forest classifier provides effective classification result than other machine learning techniques.
  • 关键词:Subarachnoid Haemorrhage; Machine Learning Techniques; Support Vector Machine; Naïve Bayesian Classifiers; Bayesian Networks; Genetic Algorithm.
国家哲学社会科学文献中心版权所有