首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Study of Indoor Positioning Method Based on Combination of Support Vector Regression and Kalman Filtering
  • 本地全文:下载
  • 作者:Yu Zhang ; Lian Dong ; Lei Lai
  • 期刊名称:International Journal of Future Generation Communication and Networking
  • 印刷版ISSN:2233-7857
  • 出版年度:2016
  • 卷号:9
  • 期号:3
  • 页码:201-214
  • DOI:10.14257/ijfgcn.2016.9.3.19
  • 出版社:SERSC
  • 摘要:Against the problem that indoor positioning suffers quite large errors and irregular user location movement, this paper adopts Support Vector Regression (SVR) for initial positioning and Kalman filtering for filtering of the positioning results so as to improve the accuracy of the positioning system. The experimental results show that against the real WLAN environment, SVR positioning results processed by Kalman filtering indicates the root mean square error is decreased by 16%, and 73% of positioning accuracy within 2 meters is increased to 83%.
  • 关键词:Indoor positioning; SVR; Kalman filtering; positioning accuracy
国家哲学社会科学文献中心版权所有