首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A Data Volume Aware Ant Colony Optimization Approach for Geographical Knowledge Cloud Service Composition
  • 本地全文:下载
  • 作者:Xiaozhu Wu ; Chongcheng Chen ; Hongyu Huang
  • 期刊名称:International Journal of Grid and Distributed Computing
  • 印刷版ISSN:2005-4262
  • 出版年度:2016
  • 卷号:9
  • 期号:6
  • 页码:103-116
  • DOI:10.14257/ijgdc.2016.9.6.11
  • 出版社:SERSC
  • 摘要:Geographical knowledge cloud service is a typical online service that provides big spatial data analysis with the function of knowledge discovery or decision-making. The composition of geographical knowledge cloud service imposes stricter requirements for better overall QoS and execution efficiency of the service chain. In this paper, we present a data volume aware ant colony optimization approach called DVA-MOACO algorithm for geographical knowledge cloud service composition. Our algorithm utilizes a multi-index service quality evaluation model, and improves the transition probability while considering the data transfer cost and other QoS constraints simultaneously when ant finding path. Our algorithm could reach the Pareto near optimal solution rapidly with better QoS performance and lower data transfer cost from numerous candidate solutions.
  • 关键词:service composition; multi-object optimization; ant colony algorithm; ; geographical knowledge service; cloud computing
国家哲学社会科学文献中心版权所有