首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Research on Stock Price Prediction Model based on GA Optimized SVM Parameters
  • 本地全文:下载
  • 作者:Liang bang-long ; Lin jie ; Yuan Guanghui
  • 期刊名称:International Journal of Security and Its Applications
  • 印刷版ISSN:1738-9976
  • 出版年度:2016
  • 卷号:10
  • 期号:7
  • 页码:269-280
  • DOI:10.14257/ijsia.2016.10.7.24
  • 出版社:SERSC
  • 摘要:This paper construct the predicted model based on support vector machine (SVM) for the Shanghai Composite Index, acquired the model parameters using genetic algorithm optimization was carried out, combined with k-fold cross method. Experiments based on the start date to February 2011 total 4948 trading day data, 10 fold cross circulation experiments of GA optimization; get the most accurate model parameter of SVM. At last, the regression model is used to predict, and the relative error of regression prediction is 0.11, and the accuracy of regression prediction is higher. In conclusion, this model can be used to predict the Shanghai Composite Index.
  • 关键词:SVM; genetic algorithm; K fold cross experiment; regression prediction
国家哲学社会科学文献中心版权所有