期刊名称:International Journal of Signal Processing, Image Processing and Pattern Recognition
印刷版ISSN:2005-4254
出版年度:2016
卷号:9
期号:6
页码:259-268
DOI:10.14257/ijsip.2016.9.6.23
出版社:SERSC
摘要:The mixture model is a commonly used approach for image segmentation. However, it doesn't consider the spatial information. In order to overcome this disadvantage, several spatially constrained mixture models have been proposed. In this paper, these spatially constrained mixture models and their experimental results on synthetic and real world images are presented. These experimental results demonstrate that the spatially constrained mixture models can achieve competitive performance compared to the standard mixture model.