摘要:Millions of hectares throughout the Intermountain West are either dominated or threatened by the invasive annual grass Bromus tectorum (cheatgrass). This invasion is largely linked to disturbance and few regions appear immune. Disturbance liberates resources in a community and cheatgrass appears exceptionally able to capitalize on these resources. One species, however, is consistently competitive with cheatgrass. Agropyron cristatum (crested wheatgrass), an improved plant material developed from several populations in central Asia, is drought resistant, grazing tolerant, and largely excludes cheatgrass in stands established within the Great Basin. While previous studies document high resource uptake ability by crested wheatgrass, it remains unknown if high uptake in this species is due to morphological or physiological adaptation. We examined N uptake and tissue morphology of four grasses common in the Intermountain West, including cheatgrass and crested wheatgrass. We also included two native grasses, Pseudoroegneria spicata (bluebunch wheatgrass) and Elymus elymoides (bottlebrush squirreltail). We observed similar rates of N uptake by cheatgrass and crested wheatgrass and their uptake was greater than the native perennial species. A multivariate analysis suggests that, of the three perennial grasses examined here, crested wheatgrass is morphologically most similar to cheatgrass, but that morphology only accounts for 57 percent of the variation in N uptake capacity among species. Consequently, physiological traits such as induction of N uptake or N efflux likely play a role in the ability of crested wheatgrass to achieve N uptake rates similar to cheatgrass.