首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Improving Eye Motion Sequence Recognition Using Electrooculography Based on Context-Dependent HMM
  • 本地全文:下载
  • 作者:Fuming Fang ; Takahiro Shinozaki ; Yasuo Horiuchi
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2016
  • 卷号:2016
  • DOI:10.1155/2016/6898031
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Eye motion-based human-machine interfaces are used to provide a means of communication for those who can move nothing but their eyes because of injury or disease. To detect eye motions, electrooculography (EOG) is used. For efficient communication, the input speed is critical. However, it is difficult for conventional EOG recognition methods to accurately recognize fast, sequentially input eye motions because adjacent eye motions influence each other. In this paper, we propose a context-dependent hidden Markov model- (HMM-) based EOG modeling approach that uses separate models for identical eye motions with different contexts. Because the influence of adjacent eye motions is explicitly modeled, higher recognition accuracy is achieved. Additionally, we propose a method of user adaptation based on a user-independent EOG model to investigate the trade-off between recognition accuracy and the amount of user-dependent data required for HMM training. Experimental results show that when the proposed context-dependent HMMs are used, the character error rate (CER) is significantly reduced compared with the conventional baseline under user-dependent conditions, from 36.0 to 1.3%. Although the CER increases again to 17.3% when the context-dependent but user-independent HMMs are used, it can be reduced to 7.3% by applying the proposed user adaptation method.
国家哲学社会科学文献中心版权所有