首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Forecasting Real U.S. House Prices: Principal Components Versus Bayesian Regressions
  • 本地全文:下载
  • 作者:Rangan Gupta ; Alain Kabundi
  • 期刊名称:International Business & Economics Research Journal
  • 印刷版ISSN:1535-0754
  • 电子版ISSN:2157-9393
  • 出版年度:2010
  • 卷号:9
  • 期号:7
  • 语种:English
  • 出版社:The Clute Institute for Academic Research
  • 摘要:This paper analyzes the ability of principal component regressions and Bayesian regression methods under Gaussian and double-exponential prior in forecasting the real house prices of the United States (U.S.), based on a monthly dataset of 112 macroeconomic variables. Using an in-sample period of 1992:01 to 2000:12, Bayesian regressions are used to forecast real U.S. house prices at the twelve-months-ahead forecast horizon over the out-of-sample period of 2001:01 to 2004:10. I n terms of the Mean Square Forecast Errors (MSFEs), our results indicate that a principal component regression with only one factor is best-suited for forecasting the real U.S. house prices. Among the Bayesian models, the regression based on the double exponential prior outperforms the model with Gaussian assumptions.
  • 关键词:Bayesian Regressions;Principal Components;Large-Cross Sections
国家哲学社会科学文献中心版权所有