首页    期刊浏览 2024年10月04日 星期五
登录注册

文章基本信息

  • 标题:MicroRNA-34b mediates hippocampal astrocyte apoptosis in a rat model of recurrent seizures
  • 本地全文:下载
  • 作者:Liqun Liu ; Lingjuan Liu ; Jiayun Shi
  • 期刊名称:BMC Neuroscience
  • 印刷版ISSN:1471-2202
  • 电子版ISSN:1471-2202
  • 出版年度:2016
  • 卷号:17
  • 期号:1
  • 页码:56
  • DOI:10.1186/s12868-016-0291-6
  • 语种:English
  • 出版社:BioMed Central
  • 摘要:Background Recurrent convulsions can cause irreversible astrocyte death, impede neuron regeneration, and further aggravate brain damage. MicroRNAs have been revealed as players in the progression of numerous diseases including cancer and Alzheimer’s disease. Particularly, microRNA has been found linked to seizure-induced neuronal death. In this study, a rat model of recurrent convulsions induced by flurothyl treatments was utilised to assess the alterations of microRNA expressions in hippocampus tissues. We also applied an in vitro model in which primary astrocytes were exposed to kainic acid to verify the targets of miR-34b-5p identified in the animal model. Results We discovered that miR-34b-5p, a member of the miR-34 family, increased significantly in flurothyl-treated rat hippocampus tissue. More surprisingly, this upregulation occurred concurrently with accumulating astrocyte apoptosis, indicating the involvement of miR-34b-5p in seizures caused astrocyte apoptosis. Results from the in vitro experiments further demonstrated that miR-34b-5p directly targeted Bcl-2 mRNA, translationally repressed Bcl-2 protein, and thus modulated cell apoptosis by influencing Bcl-2, Bax, and Caspase-3. Conclusion Our findings prove microRNAs play a role in mediating recurrent convulsions-induced astrocyte death and further indicate that miR-34b-5p could acts as a regulator for astrocyte apoptosis induced by recurrent seizures.
  • 关键词:MiR-34 ; Bcl-2 ; Convulsion ; Hippocampus ; Astrocytes
国家哲学社会科学文献中心版权所有