首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Neural network, kernighan-lin and multilevel heuristics for the graph bisection problem on geometrically connected graphs
  • 本地全文:下载
  • 作者:Gonzalo Hernandez ; Jorge Cornejo ; Roberto Leon
  • 期刊名称:Memorias de la ULA
  • 期号:1
  • 语种:Spanish
  • 出版社:Universidad de Los Andes
  • 摘要:A neural network heuristic for the Graph Bisection Problem is studied numerically on geometrically connected graphs and its performance is compared with the Kernighan - Lin (KL) and Multilevel (ML) heuristics. For mediumscale sparse graphs with n = 2000 to n = 12000 nodes it was obtained that the NN heuristic applied to the Graph Bisection Problem present a greedy behaviour in comparison to other local improvements heuristics: Kernighan-Lin, Multilevel. The experimental results for large graphs recommend to use KL as partitioning heuristic for sparse geometrically connected graphs.
国家哲学社会科学文献中心版权所有