期刊名称:Alexandria: Revista de Educação em Ciência e Tecnologia
印刷版ISSN:1982-5153
出版年度:2016
卷号:9
期号:2
页码:287-301
DOI:10.5007/1982-5153.2016v9n2p287
出版社:UFSC
摘要:A discussão acerca da possibilidade de construções de objetos matemáticos no âmbito escolar, construções essas que tenham a ver com subsídios proporcionados por atividades de modelagem matemática, é o cerne deste artigo, o qual, em termos metodológicos, é marcado pela perquirição qualitativa de cunho teórico-bibliográfico. A dedução, mesmo não sendo exclusiva do pensamento matemático, é o seu atributo mais significativo, diferenciando tal pensamento de ações cognitivas que se iniciam pela abordagem de casos particulares, normalmente característicos do mundo entendido como real, o que dá margem a críticas fortalecedoras da ideia de insuficiência da modelagem matemática, no ensino e na aprendizagem, visando à elaboração de objetos matemáticos, na medida em que a atividade de modelar (afora o vínculo que mantém com a dedução) não prescinde das chamadas situações reais, que, por abrangerem singularidades, demandam (e são demandadas por) processos cognitivos frequentemente opostos ao caminhar dedutivo, embora a dedução seja necessária ao sujeito cognoscente quando lida não apenas com o domínio matemático, mas também com diversas situações nomeadas de reais. A pergunta-diretriz do presente artigo é a mesma que o intitula: “pode-se aprender Matemática através da investigação de casos particulares?”. Neste texto, mediante ênfase a liames que envolvem os temas “desordem, ordem, indução e dedução”, apresentam-se argumentos que conduzem a resultados ou conclusões favoráveis à eficácia do “aprendizado (e/ou da construção) de Matemática com auxílio do ato de modelar”, sem a desconsideração, a seu turno, do emprego da modelagem matemática com vistas também ao aperfeiçoamento de habilidades matemáticas previamente internalizadas ou assimiladas pelo aluno.
其他摘要:http://dx.doi.org/10.5007/1982-5153.2016v9n2p287 The discussion about the possibility of construction of mathematical objects in schools – constructions that have to do with subsidies provided by mathematical modeling activities – is the core of this article, which is marked (methodologically) by qualitative perquisition of theoretical and bibliographic nature. The deduction, although not exclusive of mathematical thinking, is its most significant atribute, differentiating this thinking of the cognitive actions that are initiated by the approach of particular cases. The particular cases usually are characteristic of the world that is understood as real. This gives rise to favorable reviews – in teaching and learning – to the idea of failure of the mathematical modeling when she (the mathematical modeling) aims at elaboration of mathematical objects, because the activity of modeling (aside from the bond that she keeps with the deduction) can not succeed without the so-called real situations. These (real) situations require (and are demanded by) cognitive processes that are opposing when walking deductive because they (the situations) contain singularities, though the deduction is necessary for the cognitive subject when he not only connect with the mathematical field, but also with several situations that are called real. The directive question of this article is the same as his title: “on can learn Mathematics by investigating particular cases?”. This article – by emphasizing the ties involving the matters “disorder, order, induction and deduction” – presents arguments that lead to results or conclusions in favor of the effectiveness of “learning (and/or construction) of Mathematics with the help of the act of modeling”, without disrespect, in turn, the use of mathematical modeling in order also to improve math skills previously internalized and assimilated by the student.