期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
印刷版ISSN:2302-9293
出版年度:2016
卷号:14
期号:1
页码:47-55
DOI:10.12928/telkomnika.v14i1.2634
语种:English
出版社:Universitas Ahmad Dahlan
摘要:Digital cameras acquire color images using a single sensor with Color filter Arrays. A single color component per pixel is acquired using color filter arrays and the remaining two components are obtained using demosaicing techniques. The conventional demosaicing techniques existent induce artifacts in resultant images effecting reconstruction quality. To overcome this drawback a frequency based demosaicing technique is proposed. The luminance and chrominance components extracted from the frequency domain of the image are interpolated to produce intermediate demosaiced images. A novel Neural Network Based Image Reconstruction Algorithm is applied to the intermediate demosaiced image to obtain resultant demosaiced images. The results presented in the paper prove the proposed demosaicing technique exhibits the best performance and is applicable to a wide variety of images.
其他摘要:Digital cameras acquire color images using a single sensor with Color filter Arrays. A single color component per pixel is acquired using color filter arrays and the remaining two components are obtained using demosaicing techniques. The conventional demosaicing techniques existent induce artifacts in resultant images effecting reconstruction quality. To overcome this drawback a frequency based demosaicing technique is proposed. The luminance and chrominance components extracted from the frequency domain of the image are interpolated to produce intermediate demosaiced images. A novel Neural Network Based Image Reconstruction Algorithm is applied to the intermediate demosaiced image to obtain resultant demosaiced images. The results presented in the paper prove the proposed demosaicing technique exhibits the best performance and is applicable to a wide variety of images.
关键词:Demosaicing; frequency; color filter array; luminance; chrominance;Neural Networks; adaptive