期刊名称:iSys - Revista Brasileira de Sistemas de Informação
印刷版ISSN:1984-2902
出版年度:2013
卷号:5
期号:1
语种:Portuguese
出版社:iSys - Revista Brasileira de Sistemas de Informação
摘要:A web vem se tornando cada vez mais importante para seus usuários, tanto como fonte de diversão, comunicação, pesquisa, notícias e comércio. Consequentemente, os sites concorrem entre si para atrair a atenção dos usuários, sendo que muitos ganham maior visibilidade através de estratégias que enganam os motores de busca. Esses sites, conhecidos como web spam, causam prejuízos pessoais e econômicos aos usuários. Diante desse cenário, este trabalho apresenta uma análise de desempenho de diversas técnicas de aprendizagem de máquina aplicadas na detecção automática de servidores web que propagam web spam. Por meio de uma validação estatística dos resultados observou-se as técnicas de bagging de árvores de decisão, redes neurais perceptron de múltiplas camadas, floresta aleatória e boosting adaptativo de árvores de decisão são promissoras na tarefa de detecção de spam hosts.