首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Alzheimer's disease early detection from sparse data using brain importance maps
  • 本地全文:下载
  • 作者:Andreas Kodewitz ; Sylvie Lelandais ; Christophe Montagne
  • 期刊名称:ELCVIA: electronic letters on computer vision and image analysis
  • 印刷版ISSN:1577-5097
  • 出版年度:2013
  • 卷号:12
  • 期号:1
  • 语种:English
  • 出版社:Centre de Visió per Computador
  • 摘要:Statistical methods are increasingly used in the analysis of FDG-PET images for the early diagnosis of Alzheimer’s disease. We will demonstrate a method to extract information about the location of metabolic changes induced by Alzheimer’s disease based on a machine learning approach that directly relies features and brain areas to search for regions of interest (ROIs). This approach has the advantage over voxel-wise statistics to consider also the interactions between the features/voxels. We produce “maps” to visualize the most informative regions of the brain and compare the maps created by our approach with voxel-wise statistics. In classification experiments, using the extracted maps, we achieved classification rates of up to 95.5%.
  • 关键词:Statistical Pattern Recognition;Machine Learning and Data Mining;Medical Diagnosis;Medical Image Analysis
国家哲学社会科学文献中心版权所有