首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:SVD vs PCA: Comparison of Performance in an Imaging Spectrometer
  • 本地全文:下载
  • 作者:Wilma Oblefias ; Maricor Soriano ; Caesar Saloma
  • 期刊名称:Science Diliman
  • 印刷版ISSN:2012-0818
  • 出版年度:2007
  • 卷号:16
  • 期号:2
  • 语种:English
  • 出版社:OVCRD
  • 摘要:The calculation of basis spectra from a spectral library is an important prerequisite of any compact imaging spectrometer. In this paper, we compare the basis spectra computed by singular-value decomposition (SVD) and principal component analysis (PCA) in terms of estimation performance with respect to resolution, presence of noise, intensity variation, and quantization error. Results show that SVD is robust in intensity variation while PCA is not. However, PCA performs better with signals of low signal-to-noise ratio. No significant difference is seen between SVD and PCA in terms of resolution and quantization error.
国家哲学社会科学文献中心版权所有