期刊名称:An International Journal of Optimization and Control: Theories & Applications (IJOCTA)
印刷版ISSN:2146-5703
出版年度:2016
卷号:6
期号:2
页码:85-102
DOI:10.11121/ijocta.01.2016.00296
语种:English
出版社:An International Journal of Optimization and Control: Theories & Applications (IJOCTA)
摘要:In this study, we consider field hospital location decisions for emergency treatment points in response to large scale disasters. Specifically, we developed a two-stage stochastic model that determines the number and locations of field hospitals and the allocation of injured victims to these field hospitals. Our model considers the locations as well as the failings of the existing public hospitals while deciding on the location of field hospitals that are anticipated to be opened. The model that we developed is a variant of the P-median location model and it integrates capacity restrictions both on field hospitals that are planned to be opened and the disruptions that occur in existing public hospitals. We conducted experiments to demonstrate how the proposed model can be utilized in practice in a real life problem case scenario. Results show the effects of the failings of existing hospitals, the level of failure probability and the capacity of projected field hospitals to deal with the assessment of any given emergency treatment system’s performance. Crucially, it also specifically provides an assessment on the average distance within which a victim needs to be transferred in order to be treated properly and then from this assessment, the proportion of total satisfied demand is then calculated.
其他摘要:In this study, we consider field hospital location decisions for emergency treatment points in response to large scale disasters. Specifically, we developed a two-stage stochastic model that determines the number and locations of field hospitals and the allocation of injured victims to these field hospitals. Our model considers the locations as well as the failings of the existing public hospitals while deciding on the location of field hospitals that are anticipated to be opened. The model that we developed is a variant of the P-median location model and it integrates capacity restrictions both on field hospitals that are planned to be opened and the disruptions that occur in existing public hospitals. We conducted experiments to demonstrate how the proposed model can be utilized in practice in a real life problem case scenario. Results show the effects of the failings of existing hospitals, the level of failure probability and the capacity of projected field hospitals to deal with the assessment of any given emergency treatment system’s performance. Crucially, it also specifically provides an assessment on the average distance within which a victim needs to be transferred in order to be treated properly and then from this assessment, the proportion of total satisfied demand is then calculated.