期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2016
卷号:6
期号:3
页码:974-979
DOI:10.11591/ijece.v6i3.9155
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:Curve fitting is one of the procedures in data analysis and is helpful for prediction analysis showing graphically how the data points are related to one another whether it is in linear or non-linear model. Usually, the curve fit will find the concentrates along the curve or it will just use to smooth the data and upgrade the presence of the plot. Curve fitting checks the relationship between independent variables and dependent variables with the objective of characterizing a good fit model. Curve fitting finds mathematical equation that best fits given information. In this paper, 150 unorganized data points of environmental variables are used to develop Linear and non-linear data modelling which are evaluated by utilizing 3 dimensional ‘Sftool’ and ‘Labfit’ machine learning techniques. In Linear model, the best estimations of the coefficients are realized by the estimation of R- square turns in to one and in Non-Linear models with least Chi-square are the criteria.
其他摘要:Curve fitting is one of the procedures in data analysis and is helpful for prediction analysis showing graphically how the data points are related to one another whether it is in linear or non-linear model. Usually, the curve fit will find the concentrates along the curve or it will just use to smooth the data and upgrade the presence of the plot. Curve fitting checks the relationship between independent variables and dependent variables with the objective of characterizing a good fit model. Curve fitting finds mathematical equation that best fits given information. In this paper, 150 unorganized data points of environmental variables are used to develop Linear and non-linear data modelling which are evaluated by utilizing 3 dimensional ‘Sftool’ and ‘Labfit’ machine learning techniques. In Linear model, the best estimations of the coefficients are realized by the estimation of R- square turns in to one and in Non-Linear models with least Chi-square are the criteria.