首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Robust Digital Predistortion in Saturation Region of Power Amplifiers
  • 其他标题:Robust Digital Predistortion in Saturation Region of Power Amplifiers
  • 本地全文:下载
  • 作者:Soon-il Hong ; Kwang-Pyo Lee ; Eui-Rim Jeong
  • 期刊名称:International Journal of Electrical and Computer Engineering
  • 电子版ISSN:2088-8708
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • 页码:99-105
  • DOI:10.11591/ijece.v6i1.pp99-105
  • 语种:English
  • 出版社:Institute of Advanced Engineering and Science (IAES)
  • 摘要:This paper proposes a digital predistortion (DPD) technique to improve linearization performance when the power amplifier (PA) is driven near the saturation region. The PA is a non-linear device in general, and the nonlinear distortion becomes severer as the output power increases. However, the PA’s power efficiency increases as the PA output power increases. The nonlinearity results in spectral regrowth, which leads to adjacent channel interference, and degrades the transmit signal quality. According to our simulation, the linearization performance of DPD is degraded abruptly when the PA operates in its saturation region. To relieve this problem, we propose an improved DPD technique. The proposed technique performs on/off control of the adaptive algorithm based on the magnitude of the transmitted signal. Specifically, the adaptation normally works for small and medium signals while it stops for large signals. Therefore, harmful coefficient updates by saturated signals can be avoided. A computer simulation shows that the proposed method can improve the linearization performance compared with the conventional DPD method in highly driven PAs.
  • 其他摘要:This paper proposes a digital predistortion (DPD) technique to improve linearization performance when the power amplifier (PA) is driven near the saturation region. The PA is a non-linear device in general, and the nonlinear distortion becomes severer as the output power increases. However, the PA’s power efficiency increases as the PA output power increases. The nonlinearity results in spectral regrowth, which leads to adjacent channel interference, and degrades the transmit signal quality. According to our simulation, the linearization performance of DPD is degraded abruptly when the PA operates in its saturation region. To relieve this problem, we propose an improved DPD technique. The proposed technique performs on/off control of the adaptive algorithm based on the magnitude of the transmitted signal. Specifically, the adaptation normally works for small and medium signals while it stops for large signals. Therefore, harmful coefficient updates by saturated signals can be avoided. A computer simulation shows that the proposed method can improve the linearization performance compared with the conventional DPD method in highly driven PAs.
国家哲学社会科学文献中心版权所有