期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2016
卷号:6
期号:2
页码:447-457
DOI:10.11591/ijece.v6i2.pp447-457
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:This paper investigates the behavior of a high frequency parallel quasiresonantinverter fitted domestic induction heater with different switching frequencies. The power semiconductor switch Insulated Gate Bipolar Junction Transistor (IGBT) is incorporated in this high frequency inverter that can operate under ZVS and ZCS conditions during the switching operations at certain switching frequency to reduce switching losses. The proposed induction heating system responds to three different switching frequencies with providing different results. An Insulated Gate Bipolar Junction Transistor (IGBT) provides better efficiency and faster switching operations. After the complete study of the proposed induction heating system at the selected switching frequencies, the results are compared and it is decided that most reliable, efficient and effective operations from the proposed induction heater can be obtained if the switching frequency is selected slightly above the resonant frequency of the tank circuit of the resonant inverter. The proposed scheme is analyzed using Power SystemSimulator (PSIM) environment.
其他摘要:This paper presents the performance analysis of high frequency parallel quasi-resonant converter for domestic induction heating application as well as industrial application. The power semiconductor switch like IGBT is incorporated in this high frequency converter. Parallel Quasi-resonant topology is selected to provide ZVS and ZCS operation during switching conditions to reduce switching losses. Here, IGBT provides better efficiency and faster switching technique. In the proposed topology, a diode is connected across the IGBT ensuring the ZVS operation during turn-ON that enhances the possibility of less turn-ON loss. On the other hand, the switching frequency nearly equal to the resonant frequency ensures the ZCS operation of the IGBT during turn-OFF, which also ensures a reduction of turn-OFF loss. As a result, the performance of the induction heating system gets improved. The proposed scheme is analyzed using PSIM software environment.
关键词:Electrical (Power); Power Electronics;Quasi-resonant inverter; Duty cycle; ZVS; ZCS; THD