期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2016
卷号:6
期号:2
页码:778-784
DOI:10.11591/ijece.v6i2.pp778-784
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:Unsupervised leaning is a popular method for classify unlabeled dataset i.e. without prior knowledge about data class. Many of unsupervised learning are used to inspect and classify network flow. This paper presents in-deep study for three unsupervised classifiers, namely: K-means, K-nearest neighbor and Expectation maximization. The methodologies and how it’s employed to classify network flow are elaborated in details. The three classifiers are evaluated using three significant metrics, which are classification accuracy, classification speed and memory consuming. The K-nearest neighbor introduce better results for accuracy and memory; while K-means announce lowest processing time.
其他摘要:Unsupervised leaning is a popular method for classify unlabeled dataset i.e. without prior knowledge about data class. Many of unsupervised learning are used to inspect and classify network flow. This paper presents in-deep study for three unsupervised classifiers, namely: K-means, K-nearest neighbor and Expectation maximization. The methodologies and how it’s employed to classify network flow are elaborated in details. The three classifiers are evaluated using three significant metrics, which are classification accuracy, classification speed and memory consuming. The K-nearest neighbor introduce better results for accuracy and memory; while K-means announce lowest processing time.