首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Robust Backstepping Tracking Control of Mobile Robot Based on Nonlinear Disturbance Observer
  • 其他标题:Robust Backstepping Tracking Control of Mobile Robot Based on Nonlinear Disturbance Observer
  • 本地全文:下载
  • 作者:Mahmood Ali Moqbel Obaid ; Abdul Rashid Husain ; Ali Abdo Mohammed Al-kubati
  • 期刊名称:International Journal of Electrical and Computer Engineering
  • 电子版ISSN:2088-8708
  • 出版年度:2016
  • 卷号:6
  • 期号:2
  • 页码:901-908
  • DOI:10.11591/ijece.v6i2.pp901-908
  • 语种:English
  • 出版社:Institute of Advanced Engineering and Science (IAES)
  • 摘要:This paper presents a robust backstepping control (BC) method based on nonlinear disturbance observer (NDOB) for trajectory tracking of the nonholonomic wheeled mobile robot (WMR) in the presence of external disturbances and parameters uncertainties. At first, a bounded Fuzzy logic based backstepping controller (BFLBC) is designed to control the WMR without considering the effects of the external disturbances and the parameters uncertainties. Typically, the conventional BC controller depends upon the state tracking errors analysis, where unbounded velocity signal is produced for the applications that have huge tracking errors. Therefore, a fuzzy logic controller (FLC) is introduced in this research in order to normalize the state tracking errors, so that the input errors to the BC are bounded to a finite interval. Finally, the designed BFLBC is integrated with the nonlinear disturbance observer in order to attenuate the external disturbances and model uncertainties. The simulation results show the effectiveness of the proposed controller to generate a bounded velocity signal as well as to stabilize the tracking errors to zero. In addition, the results prove that the proposed controller provide an excellent disturbance attenuation as well as robustness against the parameters uncertainties.
  • 其他摘要:This paper presents a robust backstepping control (BC) method based on nonlinear disturbance observer (NDOB) for trajectory tracking of the nonholonomic wheeled mobile robot (WMR) in the presence of external disturbances and parameters uncertainties. At first, a bounded Fuzzy logic based backstepping controller (BFLBC) is designed to control the WMR without considering the effects of the external disturbances and the parameters uncertainties. Typically, the conventional BC controller depends upon the state tracking errors analysis, where unbounded velocity signal is produced for the applications that have huge tracking errors. Therefore, a fuzzy logic controller (FLC) is introduced in this research in order to normalize the state tracking errors, so that the input errors to the BC are bounded to a finite interval. Finally, the designed BFLBC is integrated with the nonlinear disturbance observer in order to attenuate the external disturbances and model uncertainties. The simulation results show the effectiveness of the proposed controller to generate a bounded velocity signal as well as to stabilize the tracking errors to zero. In addition, the results prove that the proposed controller provide an excellent disturbance attenuation as well as robustness against the parameters uncertainties.
国家哲学社会科学文献中心版权所有