首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:CONVERGENCE OF ITERATIVE ALGORITHMS FOR LEARNING BAYESIAN NETWORKS
  • 作者:José Carlos Ferreira da Rocha ; Alaine Margarete Guimarães ; V. A. Kozlowski Jr
  • 期刊名称:Iberoamerican Journal of Applied Computing
  • 印刷版ISSN:2237-4523
  • 出版年度:2012
  • 卷号:1
  • 期号:2
  • 语种:English
  • 出版社:Universidade Estadual de Ponta Grossa
  • 摘要:The formalism of the bayesian networks has been employed in the development of many intelligent systems. This work considers applicatins which demand the utilization of online learning methods, more specifically methods for online parameter learning. Online learning methods update the bayesian network parameters as new data samples/observations are collected. In this context, it is import to consider the convergence of the learning method in relation to the empirical distribution of the data. Given that this work proposes a experimental protocol to quantify the convergence/divergence of models generated by online learning procedures. An application example it is also presented.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有