首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Computing Minimum Spanning Trees with Uncertainty
  • 本地全文:下载
  • 作者:Michael Hoffmann ; Thomas Erlebach ; Danny Krizanc
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2008
  • 卷号:1
  • 页码:277-288
  • DOI:10.4230/LIPIcs.STACS.2008.1358
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the minimum spanning tree problem in a setting where information about the edge weights of the given graph is uncertain. Initially, for each edge $e$ of the graph only a set $A_e$, called an uncertainty area, that contains the actual edge weight $w_e$ is known. The algorithm can `update' $e$ to obtain the edge weight $w_e in A_e$. The task is to output the edge set of a minimum spanning tree after a minimum number of updates. An algorithm is $k$-update competitive if it makes at most $k$ times as many updates as the optimum. We present a $2$-update competitive algorithm if all areas $A_e$ are open or trivial, which is the best possible among deterministic algorithms. The condition on the areas $A_e$ is to exclude degenerate inputs for which no constant update competitive algorithm can exist. Next, we consider a setting where the vertices of the graph correspond to points in Euclidean space and the weight of an edge is equal to the distance of its endpoints. The location of each point is initially given as an uncertainty area, and an update reveals the exact location of the point. We give a general relation between the edge uncertainty and the vertex uncertainty versions of a problem and use it to derive a $4$-update competitive algorithm for the minimum spanning tree problem in the vertex uncertainty model. Again, we show that this is best possible among deterministic algorithms.
  • 关键词:Algorithms and data structures; Current challenges: mobile and net computing
国家哲学社会科学文献中心版权所有