首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Dynamic matrix rank with partial lookahead
  • 本地全文:下载
  • 作者:Telikepalli Kavitha
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2008
  • 卷号:2
  • 页码:268-279
  • DOI:10.4230/LIPIcs.FSTTCS.2008.1759
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the problem of maintaining information about the rank of a matrix $M$ under changes to its entries. For an $n \times n$ matrix $M$, we show an amortized upper bound of $O(n^{\omega-1})$ arithmetic operations per change for this problem, where $\omega < 2.376$ is the exponent for matrix multiplication, under the assumption that there is a {\em lookahead} of up to $\Theta(n)$ locations. That is, we know up to the next $\Theta(n)$ locations $(i_1,j_1),(i_2,j_2),\ldots,$ whose entries are going to change, in advance; however we do not know the new entries in these locations in advance. We get the new entries in these locations in a dynamic manner.
  • 关键词:Matrix rank; dynamic algorithm; fast matrix multiplication
国家哲学社会科学文献中心版权所有