首页    期刊浏览 2025年05月24日 星期六
登录注册

文章基本信息

  • 标题:Generating Shorter Bases for Hard Random Lattices
  • 本地全文:下载
  • 作者:Joel Alwen ; Chris Peikert
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2009
  • 卷号:3
  • 页码:75-86
  • DOI:10.4230/LIPIcs.STACS.2009.1832
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We revisit the problem of generating a ``hard'' random lattice together with a basis of relatively short vectors. This problem has gained in importance lately due to new cryptographic schemes that use such a procedure for generating public/secret key pairs. In these applications, a shorter basis directly corresponds to milder underlying complexity assumptions and smaller key sizes. The contributions of this work are twofold. First, using the \emph{Hermite normal form} as an organizing principle, we simplify and generalize an approach due to Ajtai (ICALP 1999). Second, we improve the construction and its analysis in several ways, most notably by tightening the length of the output basis essentially to the optimum value.
  • 关键词:Lattices; Random; Short basis; Average-case hardness; Hermite normal form; Cryptography
国家哲学社会科学文献中心版权所有