首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Kolmogorov Complexity and Solovay Functions
  • 本地全文:下载
  • 作者:Laurent Bienvenu ; Rod Downey
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2009
  • 卷号:3
  • 页码:147-158
  • DOI:10.4230/LIPIcs.STACS.2009.1810
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Solovay (1975) proved that there exists a computable upper bound~$f$ of the prefix-free Kolmogorov complexity function~$K$ such that $f(x)=K(x)$ for infinitely many~$x$. In this paper, we consider the class of computable functions~$f$ such that $K(x) \leq f(x)+O(1)$ for all~$x$ and $f(x) \leq K(x)+O(1)$ for infinitely many~$x$, which we call Solovay functions. We show that Solovay functions present interesting connections with randomness notions such as Martin-L\"of randomness and K-triviality.
  • 关键词:Algorithmic randomness; Kolmogorov complexity; K-triviality
国家哲学社会科学文献中心版权所有