首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Undecidable Properties of Limit Set Dynamics of Cellular Automata
  • 本地全文:下载
  • 作者:Pietro Di Lena ; Luciano Margara
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2009
  • 卷号:3
  • 页码:337-348
  • DOI:10.4230/LIPIcs.STACS.2009.1819
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Cellular Automata (CA) are discrete dynamical systems and an abstract model of parallel computation. The limit set of a cellular automaton is its maximal topological attractor. A well know result, due to Kari, says that all nontrivial properties of limit sets are undecidable. In this paper we consider properties of limit set dynamics, i.e. properties of the dynamics of Cellular Automata restricted to their limit sets. There can be no equivalent of Kari's Theorem for limit set dynamics. Anyway we show that there is a large class of undecidable properties of limit set dynamics, namely all properties of limit set dynamics which imply stability or the existence of a unique subshift attractor. As a consequence we have that it is undecidable whether the cellular automaton map restricted to the limit set is the identity, closing, injective, expansive, positively expansive, transitive.
  • 关键词:Cellular automata; Undecidability; Symbolic dynamics
国家哲学社会科学文献中心版权所有