首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Equations over Sets of Natural Numbers with Addition Only
  • 本地全文:下载
  • 作者:Artur Jez ; Alexander Okhotin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2009
  • 卷号:3
  • 页码:577-588
  • DOI:10.4230/LIPIcs.STACS.2009.1806
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Systems of equations of the form $X=YZ$ and $X=C$ are considered, in which the unknowns are sets of natural numbers, ``$+$'' denotes pairwise sum of sets $S+T=\ensuremath{ \{ m+n \: | \: m \in S, \; n \in T \} }$, and $C$ is an ultimately periodic constant. It is shown that such systems are computationally universal, in the sense that for every recursive (r.e., co-r.e.) set $S \subseteq \mathbb{N}$ there exists a system with a unique (least, greatest) solution containing a component $T$ with $S=\ensuremath{ \{ n \: | \: 16n+13 \in T \} }$. This implies undecidability of basic properties of these equations. All results also apply to language equations over a one-letter alphabet with concatenation and regular constants.
国家哲学社会科学文献中心版权所有