首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Kernels for Feedback Arc Set In Tournaments
  • 本地全文:下载
  • 作者:St{\'e}phane Bessy ; Fedor V. Fomin ; Serge Gaspers
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2009
  • 卷号:4
  • 页码:37-47
  • DOI:10.4230/LIPIcs.FSTTCS.2009.2305
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A tournament $T = (V,A)$ is a directed graph in which there is exactly one arc between every pair of distinct vertices. Given a digraph on $n$ vertices and an integer parameter $k$, the {\sc Feedback Arc Set} problem asks whether thegiven digraph has a set of $k$ arcs whose removal results in an acyclicdigraph. The {\sc Feedback Arc Set} problem restricted to tournaments is knownas the {\sc $k$-Feedback Arc Set in Tournaments ($k$-FAST)} problem. In thispaper we obtain a linear vertex kernel for \FAST{}. That is, we give apolynomial time algorithm which given an input instance $T$ to \FAST{} obtains an equivalent instance $T'$ on $O(k)$ vertices. In fact, given any fixed $\epsilon > 0$, the kernelized instance has at most $(2 + \epsilon)k$ vertices.Our result improves the previous known bound of $O(k^2)$ on the kernel size for\FAST{}. Our kernelization algorithm solves the problem on a subclass of tournaments in polynomial time and uses a known polynomial time approximation scheme for \FAST.
  • 关键词:Parameterized complexity; kernels; tournaments
国家哲学社会科学文献中心版权所有