首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Large-Girth Roots of Graphs
  • 作者:Anna Adamaszek ; Michal Adamaszek
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2010
  • 卷号:5
  • 页码:35-46
  • DOI:10.4230/LIPIcs.STACS.2010.2442
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the problem of recognizing graph powers and computing roots of graphs. We provide a polynomial time recognition algorithm for $r$-th powers of graphs of girth at least $2r+3$, thus improving a bound conjectured by Farzad et al. (STACS 2009). Our algorithm also finds all $r$-th roots of a given graph that have girth at least $2r+3$ and no degree one vertices, which is a step towards a recent conjecture of Levenshtein that such root should be unique. On the negative side, we prove that recognition becomes an NP-complete problem when the bound on girth is about twice smaller. Similar results have so far only been attempted for $r=2,3$.
  • 关键词:Graph roots; Graph powers; NP-completeness; Recognition algorithms
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有