首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Exact Covers via Determinants
  • 作者:Andreas Bj{\"o}rklund
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2010
  • 卷号:5
  • 页码:95-106
  • DOI:10.4230/LIPIcs.STACS.2010.2447
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a $k$-uniform hypergraph on $n$ vertices, partitioned in $k$ equal parts such that every hyperedge includes one vertex from each part, the $k$-Dimensional Matching problem asks whether there is a disjoint collection of the hyperedges which covers all vertices. We show it can be solved by a randomized polynomial space algorithm in $O^*(2^{n(k-2)/k})$ time. The $O^*()$ notation hides factors polynomial in $n$ and $k$. The general Exact Cover by $k$-Sets problem asks the same when the partition constraint is dropped and arbitrary hyperedges of cardinality $k$ are permitted. We show it can be solved by a randomized polynomial space algorithm in $O^*(c_k^n)$ time, where $c_3=1.496, c_4=1.642, c_5=1.721$, and provide a general bound for larger $k$. Both results substantially improve on the previous best algorithms for these problems, especially for small $k$. They follow from the new observation that Lov\'asz' perfect matching detection via determinants (Lov\'asz, 1979) admits an embedding in the recently proposed inclusion--exclusion counting scheme for set covers, \emph{despite} its inability to count the perfect matchings.
  • 关键词:Moderately Exponential Time Algorithms; Exact Set Cover; $k$-Dimensional Matching
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有