首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Online Correlation Clustering
  • 作者:Claire Mathieu ; Ocan Sankur ; Warren Schudy
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2010
  • 卷号:5
  • 页码:573-584
  • DOI:10.4230/LIPIcs.STACS.2010.2486
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the online clustering problem where data items arrive in an online fashion. The algorithm maintains a clustering of data items into similarity classes. Upon arrival of v, the relation between v and previously arrived items is revealed, so that for each u we are told whether v is similar to u. The algorithm can create a new luster for v and merge existing clusters. When the objective is to minimize disagreements between the clustering and the input, we prove that a natural greedy algorithm is O(n)-competitive, and this is optimal. When the objective is to maximize agreements between the clustering and the input, we prove that the greedy algorithm is .5-competitive; that no online algorithm can be better than .834-competitive; we prove that it is possible to get better than 1/2, by exhibiting a randomized algorithm with competitive ratio .5+c for a small positive fixed constant c.
  • 关键词:Correlation clustering; online algorithms
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有