首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A graph polynomial for independent sets of bipartite graphs
  • 本地全文:下载
  • 作者:Qi Ge ; Daniel Stefankovic
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2010
  • 卷号:8
  • 页码:240-250
  • DOI:10.4230/LIPIcs.FSTTCS.2010.240
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We introduce a new graph polynomial that encodes interesting properties of graphs, for example, the number of matchings, the number of perfect matchings, and, for bipartite graphs, the number of independent sets (#BIS). We analyze the complexity of exact evaluation of the polynomial at rational points and show a dichotomy result---for most points exact evaluation is #P-hard (assuming the generalized Riemann hypothesis) and for the rest of the points exact evaluation is trivial. We propose a natural Markov chain to approximately evaluate the polynomial for a range of parameters. We prove an upper bound on the mixing time of the Markov chain on trees. As a by-product we show that the ``single bond flip'' Markov chain for the random cluster model is rapidly mixing on constant tree-width graphs.
  • 关键词:graph polynomials; #P-complete; independent sets; approximate counting problems; Markov chain Monte Carlo
国家哲学社会科学文献中心版权所有