首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Graph Isomorphism is not AC^0 reducible to Group Isomorphism
  • 本地全文:下载
  • 作者:Arkadev Chattopadhyay ; Jacobo Tor{\'a}n ; Fabian Wagner
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2010
  • 卷号:8
  • 页码:317-326
  • DOI:10.4230/LIPIcs.FSTTCS.2010.317
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We give a new upper bound for the Group and Quasigroup Isomorphism problems when the input structures are given explicitly by multiplication tables. We show that these problems can be computed by polynomial size nondeterministic circuits of unbounded fan-in with $O(\log\log n)$ depth and $O(\log^2 n)$ nondeterministic bits, where $n$ is the number of group elements. This improves the existing upper bound from \cite{Wolf 94} for the problems. In the previous upper bound the circuits have bounded fan-in but depth $O(\log^2 n)$ and also $O(\log^2 n)$ nondeterministic bits. We then prove that the kind of circuits from our upper bound cannot compute the Parity function. Since Parity is AC0 reducible to Graph Isomorphism, this implies that Graph Isomorphism is strictly harder than Group or Quasigroup Isomorphism under the ordering defined by AC0 reductions.
  • 关键词:Complexity; Algorithms; Group Isomorphism Problem; Circuit Com plexity
国家哲学社会科学文献中心版权所有