首页    期刊浏览 2024年11月13日 星期三
登录注册

文章基本信息

  • 标题:Probabilistic cellular automata, invariant measures, and perfect sampling
  • 本地全文:下载
  • 作者:Ana Busic ; Jean Mairesse ; Irene Marcovici
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2011
  • 卷号:9
  • 页码:296-307
  • DOI:10.4230/LIPIcs.STACS.2011.296
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In a probabilistic cellular automaton (PCA), the cells are updated synchronously and independently, according to a distribution depending on a finite neighborhood. A PCA can be viewed as a Markov chain whose ergodicity is investigated. A classical cellular automaton (CA) is a particular case of PCA. For a 1-dimensional CA, we prove that ergodicity is equivalent to nilpotency, and is therefore undecidable. We then propose an efficient perfect sampling algorithm for the invariant measure of an ergodic PCA. Our algorithm does not assume any monotonicity property of the local rule. It is based on a bounding process which is shown to be also a PCA.
  • 关键词:probabilistic cellular automata; perfect sampling; ergodicity
国家哲学社会科学文献中心版权所有